Skip to main content

On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices


The aim of the paper is to obtain some theoretical and numerical properties of Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices (PRM). In the case of 3 ×  3 PRM, a differentiable one-to-one correspondence is given between Saaty’s inconsistency ratio and Koczkodaj’s inconsistency index based on the elements of PRM. In order to make a comparison of Saaty’s and Koczkodaj’s inconsistencies for 4  ×  4 pairwise comparison matrices, the average value of the maximal eigenvalues of randomly generated n ×  n PRM is formulated, the elements a ij (i < j) of which were randomly chosen from the ratio scale

$$\dfrac{1}{M}, \dfrac{1}{M-1}, \ldots , \dfrac{1}{2}, 1, 2, \ldots , M - 1, M,$$

with equal probability 1/(2M − 1) and a ji is defined as 1/a ij . By statistical analysis, the empirical distributions of the maximal eigenvalues of the PRM depending on the dimension number are obtained. As the dimension number increases, the shape of distributions gets similar to that of the normal ones. Finally, the inconsistency of asymmetry is dealt with, showing a different type of inconsistency.

This is a preview of subscription content, access via your institution.


  • Aguarón J. and Moreno-Jiménez J.M. (2003). The geometric consistency index: Approximated thresholds. Euro. J. Oper. Res. 147: 137–145

    Article  Google Scholar 

  • de Borda J.C. (1781). Mémoire sur les électiones au scrutin. Histoire de l’Académie Royale des Sciences, Paris

    Google Scholar 

  • Chu A.T.W., Kalaba R.E. and Spingarn K. (1979). A comparison of two methods for determining the weight belonging to fuzzy sets. J. Optim. Theory Appl. 4: 531–538

    Article  Google Scholar 

  • Condorcet, M.: Essai sur l’application de l’analyse à la probabilité des décisions rendues á la pluralité des voix, Paris (1785)

  • Crawford G. and Williams C. (1985). A note on the analysis of subjective judgment matrices. J. Math. Psychol. 29: 387–405

    Article  Google Scholar 

  • Dodd F.J., Donegan H.A. and McMaster T.B.M. (1993). A statistical approach to consistency in AHP. Math. Comput. Modelling 18: 19–22

    Article  Google Scholar 

  • Dodd F.J., Donegan H.A. and McMaster T.B.M. (1995). Inverse inconsistency in analytic hierarchy process. Euro. J. Oper. Res. 80: 86–93

    Article  Google Scholar 

  • Duszak Z. and Koczkodaj W.W. (1994). Generalization of a new definition of consistency for pairwise comparisons. Inform. Process. Lett. 52: 273–276

    Article  Google Scholar 

  • Forman E.H. (1990). Random indices for incomplete pairwise comparison matrices. Euro. J. Oper. Res. 48: 153–155

    Article  Google Scholar 

  • Gass S.I. and Rapcsák T. (2004). Singular value decomposition in AHP. Euro. J. Oper. Res. 154(3): 573–584

    Article  Google Scholar 

  • Gass S.I. and Standard S.M. (2002). Characteristics of positive reciprocal matrices in the analytic hierarchy process. J. Oper. Res. Soc. 53: 1385–1389

    Article  Google Scholar 

  • Golden, B.L., Wang, Q.: An alternative measure of consistency. In: Golden, B.L., Wasil, E.A., Hacker, P.T. (eds.) Analytic Hierarchy Process: Applications and Studies, pp. 68–81. Springer-Verlag (1990)

  • Jensen, R.E.: Comparison of eigenvector, least squares, Chi square and logarithmic least squares methods of scaling a reciprocal matrix. Trinity University, Working Paper 127 (1983).

  • Johnson C.R., Beine W.B. and Wang T.J. (1979). Right-left asymmetry in an eigenvector ranking procedure. J. Math. Psychol. 19: 61–64

    Article  Google Scholar 

  • Koczkodaj W.W. (1993). A new definition of consistency of pairwise comparisons. Math. Comput. Modelling 8: 79–84

    Article  Google Scholar 

  • Koczkodaj, W.W., Herman, M.W., Orlowski, M.: Using consistency-driven pairwise comparisons in knowledge-based systems. In: Proceedings of the Sixth International Conference on Information and Knowledge Management, pp. 91–96. ACM Press (1997)

  • Lane E.F. and Verdini W.A. (1989). A consistency test for AHP decision makers. Decis. Sci. 20: 575–590

    Article  Google Scholar 

  • Monsuur H. (1996). An intrinsic consistency threshold for reciprocal matrices. Euro. J. Oper. Res. 96: 387–391

    Article  Google Scholar 

  • Murphy C.K. (1993). Limits on the analytic hierarchy process from its consistency index. Euro. J. Oper. Res. 65: 138–139

    Article  Google Scholar 

  • Peláez J.I. and Lamata M.T. (2003). A new measure of consistency for positive reciprocal matrices. Comput. Math. Appl. 46: 1839–1845

    Article  Google Scholar 

  • Saaty T.L. (1980, 1990). The Analytic Hierarchy Process. McGraw-Hill, New York

    Google Scholar 

  • Saaty, T.L.: Fundamentals of Decision Making. RSW Publications (1994)

  • Standard, S.M.: Analysis of positive reciprocal matrices. Master’s Thesis, Graduate School of the University of Maryland (2000)

  • Stein W.E. and Mizzi P.J. (2007). The harmonic consistency index for the analytic hierarchy process. Euro. J. Oper. Res. 177: 488–497

    Article  Google Scholar 

  • Thorndike E.L. (1920). A constant error in psychological ratings. J. Appl. Psychol. 4: 25–29

    Article  Google Scholar 

  • Thurstone L.L. (1927). The method of paired comparisons for social values. J. Abnormal Soc. Psychol. 21: 384–400

    Article  Google Scholar 

  • Tummala V.M.R. and Ling H. (1998). A note on the computation of the mean random consistency index of the analytic hierarchy process (AHP). Theory Decis. 44: 221–230

    Article  Google Scholar 

  • Vargas L.G. (1982). Reciprocal matrices with random coefficients. Math. Modelling 3: 69–81

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tamás Rapcsák.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bozóki, S., Rapcsák, T. On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices. J Glob Optim 42, 157–175 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Pairwise comparison matrix
  • Inconsistency
  • Inconsistency index
  • Randomly generated pairwise comparison matrix