Skip to main content

Lagrange multipliers and infinite-dimensional equilibrium problems


We prove the existence of the Lagrange multipliers for a constrained optimization problem, being the constraint set given by the convex set which characterizes the most important equilibrium problems. In order to obtain our result, we’ll make use of the new concept of quasi relative interior.

This is a preview of subscription content, access via your institution.


  1. Bot R.I. and Wanka G. (2006). An alternative formulation for a new closed cone constraint qualification. Nonlin. Anal. 64: 1367–1381

    Article  Google Scholar 

  2. Cojocaru M.G., Daniele P. and Nagurney A. (2005). Projected dynamical systems and evolutionary variational inequalities via Hilbert spaces and applications. Jou. Optim. Th. Appl. 27(3): 1–15

    Google Scholar 

  3. Daniele P. (2006). Dynamic Networks and Evolutionary Variational Inequalities. Edward Elgar Publishing, UK

    Google Scholar 

  4. Daniele P. and Giuffré S. (2007). General infinite dimensional duality theory and applications to evolutionary network equilibrium problems. Optim. Lett. 1(3): 227–243

    Article  Google Scholar 

  5. Daniele P., Giuffré S., Idone G. and Maugeri A. (2007). Infinite dimensional duality and applications. Mathematische Annalen 339: 221–239

    Article  Google Scholar 

  6. Maugeri A. and Vitanza C. (2007). Time-dependent equilibrium problems. In: Chinchuluun, A., Migdalas, A., Pardalos, P.M. and Pitsoulis, L. (eds) Pareto Optimality, Game Theory and Equilibria, pp 505–524. Nonconvex Optimization and its Applications Series (NOIA). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Patrizia Daniele.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Daniele, P. Lagrange multipliers and infinite-dimensional equilibrium problems. J Glob Optim 40, 65–70 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Lagrange multipliers
  • Separation theory
  • Equilibrium problems
  • Quasi relative interior