Journal of Global Optimization

, Volume 40, Issue 4, pp 697–718 | Cite as

Global minimization of rational functions and the nearest GCDs

Original Paper

Abstract

This paper discusses the global minimization of rational functions with or without constraints. We propose sum of squares relaxations to solve these problems, and study their properties. Some special features are discussed. First, we consider minimization of rational functions without constraints. Second, as an application, we show how to find the nearest common divisors of polynomials via unconstrained minimization of rational functions. Third, we discuss minimizing rational functions under some constraints which are described by polynomials.

Keywords

Rational function Polynomial Global minimization Sum of squares (SOS) Greatest common divisor Quadratic module 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnon, D., McCallum, S.: A polynomial time algorithm for the topological type of a real algebraic curve. J. Symbol. Comput. 5, 213–236Google Scholar
  2. 2.
    Brown, W., Traub, J.: On Euclid’s algorithm and the theory of subresultants. J. ACM 18, 505–514Google Scholar
  3. 3.
    Collins, G.: Subresultants and reduced polynomial remainder sequences. J. ACM 14, 128–142Google Scholar
  4. 4.
    Curto R.E. and Fialkow L. (2000). The truncated complex K-moment problem. Trans. Amer. Math. Soc. 352: 2825–2855 CrossRefGoogle Scholar
  5. 5.
    de Klerk, E.: Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications. Applied Optimization Series, vol. 65, 300 pp. Kluwer Academic Publishers, (2002)Google Scholar
  6. 6.
    Delzell C. and Prestel A. (2001). Positive Polynomials, Monographs in Mathematics. Springer, Berlin Google Scholar
  7. 7.
    Garey, M., Johnson, D.: Computers and Intractability: A guide to the theory of NP-completeness. W.H. Freeman, and Company, New York (1979)Google Scholar
  8. 8.
    Henrion D. and Lasserre J. (2003). GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi. ACM Trans. Math. Soft. 29: 165–194CrossRefGoogle Scholar
  9. 9.
    Henrion, D., Lasserre, J.: Detecting global optimality and extracting solutions in GloptiPoly. In: Henrion, D., Garulli, A. (eds.) Positive Polynomials in Control, Lecture Notes on Control and Information Sciences. Springer Verlag, Berlin (2005)Google Scholar
  10. 10.
    Jibetean D. and de Klerk E. (2006). Global optimization of rational functions: a semidefinite programming approach. Math. Prog. 106(1): 93–109 CrossRefGoogle Scholar
  11. 11.
    Jibetean, D., Laurent M.: Semidefinite approximations for global unconstrained polynomial optimization. To appear in SIAM J. Optim.Google Scholar
  12. 12.
    Karmarkar, N., Lakshman, Y.: Approximate polynomial greatest common divisors and nearest singular polynomials. In: Proceedings ISSAC’96 (Zurich, Switzerland). ACM Press, New YorkGoogle Scholar
  13. 13.
    Karmarkar N. and Lakshman Y. (1998). On approximate GCDs of univariate polynomials. J. Symbol. Comput. 26: 653–666 CrossRefGoogle Scholar
  14. 14.
    Kojima M., Kim S. and Waki H. (2003). Sparsity in sums of squares of polynomials.Math. Program. 103(1): 45–62 CrossRefGoogle Scholar
  15. 15.
    Lasserre J. (2001). Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3): 796–817 CrossRefGoogle Scholar
  16. 16.
    Laurent, M.: Semidefinite representations for finite varieties. To appear in Math. Prog.Google Scholar
  17. 17.
    Löfberg, J.: YALMIP: A MATLAB toolbox for rapid prototyping of optimization problems. Website: http://control.ee.ethz.ch/~joloef/yalmip.phpGoogle Scholar
  18. 18.
    Manocha D., Demmel J. Algorithms for interesting parametric and implicit curves I: simple intersections. ACM Trans. Graphics. 13, 73–100Google Scholar
  19. 19.
    Nesterov, Y.: Squared functional systems and optimization problems. In: Frenk, H. et al. (eds.) High Performance Optimization, pp. 405–440. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  20. 20.
    Nie, J., Demmel, J.: Shape optimization of transfer functions. In: Hager, W., Pardalos, P., Huang, S. et al. (eds.) Multiscale optimization methods and applications, pp. 313–326. Springer series on nonconvex optimization and its application series, Berlin (2005)Google Scholar
  21. 21.
    Nie J., Demmel J. and Sturmfels B. (2006). Minimizing polynomials via sum of squares over the gradient ideal. Math. Prog. Ser. A 106(3): 587–606 CrossRefGoogle Scholar
  22. 22.
    Nie, J., Schweighofer, M.: On the complexity of Putinar’s Positivstellensatz. To appear in J. Complexity.Google Scholar
  23. 23.
    Parrilo P. and Sturmfels B. (2003). Minimizing polynomial functions. In: Basu, S. and Gonzalez-Vega, L. (eds) Proceedings of the DIMACS Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science (March 2001), pp 83–100. American Mathematical Society, Providence RI Google Scholar
  24. 24.
    Parrilo P. (2003). Semidefinite programming relaxations for semialgebraic problems. Math. Prog. Ser. B 96(2): 293–320 CrossRefGoogle Scholar
  25. 26.
    Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.: SOSTOOLS User’s Guide. http://www.mit.edu/~parrilo/SOSTOOLS/Google Scholar
  26. 27.
    Putinar M. (1993). Positive polynomials on compact semi-algebraic sets. Ind. Univ. Math. J. 42: 203–206 CrossRefGoogle Scholar
  27. 28.
    Reznick, B.: Some concrete aspects of Hilbert’s 17th problem. Contemporary Mathematics, vol 253, pp. 251–272. American Mathematical Society, Providence, RI (2000)Google Scholar
  28. 29.
    Rockafellar, R.: Convex Analysis, 2nd edn. Princeton University Press, Princeton, UJ (1970)Google Scholar
  29. 30.
    Scheiderer C. (2005). Distinguished representations of non-negative polynomials. J. Algebra 289: 558–573 CrossRefGoogle Scholar
  30. 31.
    Sherali H. and Tuncbilek C. (1992). A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique. J. Glob. Optim. 2: 101–112CrossRefGoogle Scholar
  31. 32.
    Shor N. (1987). Quadratic optimization problems. Soviet J. Comput. Systems Sci. 25: 1–11 Google Scholar
  32. 33.
    Stengle G. (1996). Complexity estimates for the Schmüdgen positivstellensatz. J. Complexity 12: 167–174 CrossRefGoogle Scholar
  33. 34.
    Stetter, H.: Numerical Polynomial Algebra. Society of Industrial and Applied Mathematics (2004)Google Scholar
  34. 35.
    Sturm J.F. (1999). SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Method Softw. 11 & 12: 625–653 CrossRefGoogle Scholar
  35. 36.
    Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. To appear in SIAM J. Optim.Google Scholar
  36. 37.
    Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Math & EECSUniversity of CaliforniaBerkeleyUSA

Personalised recommendations