Skip to main content
Log in

Discrete-time dynamic traffic assignment models with periodic planning horizon: system optimum

  • Original Paper
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper proposes a system optimal dynamic traffic assignment model that does not require the network to be empty at the beginning or at the end of the planning horizon. The model assumes that link travel times depend on traffic densities and uses a discretized planning horizon. The resulting formulation is a nonlinear program with binary variables and a time-expanded network structure. Under a relatively mild condition, the nonlinear program has a feasible solution. When necessary, constraints can be added to ensure that the solution satisfies the First-In-First-Out condition. Also included are approximation schemes based on linear integer programs that can provide solutions arbitrarily close to that of the original nonlinear problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja R., Magnanti T., Orlin J. (1993). Network Flows. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  2. Boyce D., Ran B., LeBlanc L. (1995). Solving an instantaneous dynamic user-optimal route choice model. Transport. Sci. 29:128–142

    Google Scholar 

  3. Brotcorne L., De Wolf D., Gendreau M., Labbé M. (2002) A dynamic user equilibrium model for traffic assignment in urban areas. In: Gendreau M., Marcotte P. (eds) Transportation and Analysis: Current Trends. Kluwer Academic Publishers, Norwell, MA, pp. 49–69

    Google Scholar 

  4. Carey M. (1987). Optimal time-varying flow on congested network. Oper. Res. 35(1):58–69

    Google Scholar 

  5. Carey M. (2001). Dynamic traffic assignment with more flexible modelling within links. Netw. Spatial Econ. 1:349–375

    Article  Google Scholar 

  6. Carey M. (2004). Link travel times I: desirable properties. Netw. Spatial Econ. 4:257–268

    Article  Google Scholar 

  7. Carey M. (2004). Efficient discretisation for link travel time models. Netw. Spatial Econ. 4:269–290

    Article  Google Scholar 

  8. Carey M., McCartney M. (2002). Behaviour of a whole-link travel time model used in dynamic traffic assignment. Transport. Res. B 36:83–95

    Article  Google Scholar 

  9. Carey M., Ge Y., McCartney M. (2003). A whole-link travel-time model with desirable properties. Transport. Sci. 37(1):83–96

    Article  Google Scholar 

  10. Carey M., Ge Y. (2005). Convergence of a discretised travel-time model. Transport. Sci. 39(1):25–38

    Article  Google Scholar 

  11. Carey M., Srinivasan A. (1994). Solving a class of network models for dynamic flow control. Eur. J. Oper. Res. 75:151–170

    Article  Google Scholar 

  12. Carey M., Subrahmanian E. (2000). An approach to modelling time-varing flows on congested networks. Transport. Res. B 34:157–183

    Article  Google Scholar 

  13. Chen H., Hsueh C. (1998). A model and an algorithm for the dynamic user-optimal route choice Transport. Res. B 32(3):219–234

    Article  Google Scholar 

  14. CONOPT Solver: ARKI Consulting and Development A/S, Bagsvaerdvej 246 A, DK-2880 , Denmark, Phone +45 44 49 03 23, Fax +45 44 49 03 33, E-mail info@arki.dk.

  15. Daganzo C. (1995). Properties of link travel time function under dynamic loading. Transport. Res. B 29:95–98

    Article  Google Scholar 

  16. Drissi-Kaitouni O., Hameda-Benchekroun A. (1992). A dynamic traffic assignment model and a algorithm. Transport. Sci. 26(2):119–128

    Google Scholar 

  17. Friesz T., Bernstein D., Mehta N., Tobin R., Ganjalizadeh S. (1989). Dynamic network assignment considered as a continuous time optimal control problem. Oper. Res. 37(6):893–901

    Google Scholar 

  18. Friesz T., Bernstein D., Smith T., Tobin R., Wie B. (1993). A variational inequality formulation of the dynamic network user equilibrium problem. Oper. Res. 41(1):178–191

    Google Scholar 

  19. GAMS Development Corporation, 1217 Potomac Street, NW, Washington, DC 20007, USA, Phone: (202) 342–0180, Fax: (202) 342–0181.

  20. Garcia A., Reaume D., Smith R.l. (2000). Fictitious play for finding system optimal routing in dynamic traffic networks. Transport. Res. B 34:147–156

    Article  Google Scholar 

  21. Han S., Heydecker B. (2006). Consistent objective and solution of dynamic user equilibrium models. Transport. Res. B 40:16–34

    Article  Google Scholar 

  22. Ho J. (1980). A successive linear optimization approach to the dynamic traffic assignment problem. Transport. Sci. 14:295–305

    Google Scholar 

  23. Janson B.N. (1991). Dynamic traffic assignment for urban road network. Transport. Res. B 25:143–161

    Article  Google Scholar 

  24. Kaufman D.E., Nonis J., Smith R.L. (1998). A mixed integer linear programming model for dynamic route guidance. Transport. Res. B 32:431–440

    Article  Google Scholar 

  25. Lieberman, E.B.: An advance approach to meeting saturated flow requirements. In: Proceeding of the 72nd Annual Transportation Research Board Meeting, Washington, DC (1993)

  26. Li W., Waller S.T., Ziliaskopoulos A.K. (2003). A decomposition scheme for system optimal dynamic traffic assignment models. Netw. Spatial Econ. 3:441–455

    Article  Google Scholar 

  27. Lighthill M., Whitham G. (1955). On kinematic waves I: flow movement in long rivers and on kinematic waves II: a theory of traffic flow on long crowded roads. Proc. R. Soc. A 229:281–345

    Google Scholar 

  28. Lin W., Lo H. (2000). Are the objective and solutions of dynamic user-equilibrium models always consistent?. Transport. Res. A 34:137–144

    Google Scholar 

  29. Merchant D.K., Nemhauser G.L. (1978). A model and an algorithm for the dynamic traffic assignment problems. Transport. Sci. 12(3):183–199

    Google Scholar 

  30. Merchant D.K., Nemhauser G.L. (1978). Optimality conditions for dynamic traffic assigment problem. Transport. Sci. 12(3):200–207

    Google Scholar 

  31. NEOS Server of Optimization, Technical Report 97/04, Optimization Technology Center, National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, 1997.

  32. Peeta S., Ziliaskopoulos A. (2001). Foundations of dynamic traffic assignment: the past, the present and the future. Netw. Spec. Econ. 1:233–265

    Article  Google Scholar 

  33. Perakis G., Roels G. (2004). An analytical model for traffic delays and the dynamic user equilibrium models. Techical Report, OR-368-04, Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  34. Ran B., Boyce D., LeBlanc L. (1993). A new class of instantaneous dynamic user-optimal traffic models. Oper. Res. 41(1):192–202

    Google Scholar 

  35. Ran B., Boyce D. (1996). Modeling Dynamic Transportation Networks. Springer, Berlin

    Google Scholar 

  36. Ran B., Boyce D. (1996). A link-based variational inequality formulation for ideal dynamic user-optimal route choice problem. Transport. Res. C 4(1):1–12

    Article  Google Scholar 

  37. Ran B., Hall R., Boyce D. (1996). A link-based variational inequality model for dynamic departure time/route choice. Transport. Res. B 30(1):31–46

    Article  Google Scholar 

  38. Richards P. (1956). Shock waves on the highway. Oper. Res. 4:42–51

    Google Scholar 

  39. SBB Solver, ARKI Consulting and Development A/S, Bagsvaerdvej 246 A, DK-2880 Bagsvaerd, Denmark, Phone +45 44 49 03 23, Fax +45 44 49 03 33, E-mail info@arki.dk.

  40. Smith M. (1993). A new dynamic traffic model and the existence and calculation of dynamic user on congested capacity-constrained road network. Transport. Res. B 27(1):49–63

    Article  Google Scholar 

  41. Wie B., Tobin R., Friesz T., Bernstein D. (1995). A discrete time, nested cost operator approach to the dynamic network user equilibrium problem. Transport. Sci. 29(1):79–92

    Article  Google Scholar 

  42. Wie B., Tobin R., Carey M. (2002). The existence, uniqueness and computation of an arc based dynamic network user equilibrium formulation. Transport. Res. B 36:897–928

    Article  Google Scholar 

  43. Wu J., Chen Y., Florian M. (1997). The continuous dynamic network loading problem: a mathematical fromulation and solutions methods. Transport. Res. B 32(3):173–187

    Article  Google Scholar 

  44. XPress Solver, Dash Optimization Inc, 560 Sylvan Avenue, Englewood Cliffs, NJ 07632, USA, Phone 201 567 9445, Fax 201 567 9443, E-mail info@dashoptimization.com.

  45. Zhu D., Marcotte P. (2000). On the existence of solutions to the dynamic user equilibrium problem. Transport. Sci. 34(4):402–414

    Article  Google Scholar 

  46. Ziliaskopoulos A. (2000). A linear programming model for a single destination system optimum dynamic traffic assignment problem. Transport. Sci. 34(1):37–49

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artyom Nahapetyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahapetyan, A., Lawphongpanich, S. Discrete-time dynamic traffic assignment models with periodic planning horizon: system optimum. J Glob Optim 38, 41–60 (2007). https://doi.org/10.1007/s10898-006-9082-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-006-9082-4

Keywords

Navigation