Skip to main content
Log in

Systems of generalized quasivariational inclusions problems with applications to variational analysis and optimization problems

  • Original Article
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we study an existence theorem of systems of generalized quasivariational inclusions problem. By this result, we establish the existence theorems of solutions of systems of generalized equations, systems of generalized vector quasiequilibrium problem, collective variational fixed point, systems of generalized quasiloose saddle point, systems of minimax theorem, mathematical program with systems of variational inclusions constraints, mathematical program with systems of equilibrium constraints and systems of bilevel problem and semi-infinite problem with systems of equilibrium problem constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adly S. (1996) Perturbed algorithm and senstivity analysis for a generalized class of variational J. Math. Anal. 201, 609–630

    Article  Google Scholar 

  2. Ahmad R., Ansari Q.H. (2000) An iterative for generalized nonlinear variational inclusion. Appl. Math. Lett. 13(5): 23–26

    Article  Google Scholar 

  3. Ahmad R., Ansari Q.H., Irfan S.S. (2005) Generalized variational inclusions and generalized resolvent equations in Banach spaces. Comput. Math. Appl. 49, 1825–1835

    Article  Google Scholar 

  4. Ansari Q.H., Lin L.J., Su L.B. (2005) Systems of simultaneous generalized vector quasiequilibrium problems and applications. J. Optim. Theory Appl. 127, 27–44

    Article  Google Scholar 

  5. Aubin J.P., Cellina A. (1994) Differential Inclusion. Springer Verlag, Berlin, Germany

    Google Scholar 

  6. Bard J.F. (1998) Pratical Bilevel Optimization, Algorithms and Applications, Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrechlt

    Google Scholar 

  7. Birbil S., Bouza G., Frenk J.B.G., Still G. (2006) Equilibrium constrained optimization problems. Eur. J. Operat. Res. 169, 1108–1127

    Article  Google Scholar 

  8. Blum E., Oettli W. (1994) From optimilization and variational inequalities to equilibrium problems. Math. Students 63, 123–146

    Google Scholar 

  9. Chang S.S. (2000) Set-valued variational inclusion in Banach spaces. J. Math. Anal. Appl. 248, 438–454

    Article  Google Scholar 

  10. Ding X.P. (1997) Perturbed proximal point algorithm for generalized quasivariational inclusions. J. Math. Anal. Appl. 210, 88–101

    Article  Google Scholar 

  11. Fan K. (1961) A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310

    Article  Google Scholar 

  12. Fan K. (1952) Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Natl. Acad. Sci. USA 38, 121–126

    Article  Google Scholar 

  13. Fukushima M., Pang J.S. (1998) Some feasible issues in mathematical programs with equilibrium SIMA J. Optim. 8, 673–681

    Google Scholar 

  14. Hassouni A., Moudafi A. (1994) A peturbed algorithm for variational inclusions. J. Math. Anal. Appl. 185, 705–712

    Article  Google Scholar 

  15. Himmelberg C.J. (1972) Fixed point of compact multifunctions. J. Math. Anal. Appl. 38, 205–207

    Article  Google Scholar 

  16. Huang N.J. (1998) Mann and Isbikawa type perturbed iteration algorithm for nonlinear generalized variational inclusions. Comput. Math. Appl. 35(10): 1–7

    Article  Google Scholar 

  17. Lin L.J. (2005) Existence theorems of simultaneous equilibrium problems and generalized quasi-saddle points. J. Global Optim. 32, 603–632

    Google Scholar 

  18. Lin L.J. (2005) Existence results for primal and dual generalized vector equilibrium problems with applications to generalized semi-infinite programming. J. Global Optim. 32, 579–597

    Article  Google Scholar 

  19. Lin, L.J.: Mathematical program with system of equilibrium constraint. J. Global Optim. (to appear)

  20. Lin L.J. (2006) System of generalized vector quasi-equilibrium problems with applications to fixed point theorems for a family of nonexpansive multivalued mappings. J. Global Optim. 34, 15–32

    Article  Google Scholar 

  21. Lin, L.J., Hsu, H.W.: Existence theorems of vector quasi-equilibrium problems and mathematical programs with equilibrium constraints. J. Global Optim. (to appear)

  22. Lin, L.J., Huang, Y.J.: Generalized vector quasi-equilibrium problems with applications to fixed point theorems and optimization problems. Nonlinear Anal. (2006) (to appear).

  23. Lin, L.J., Liu, Y.H.: Existence theorems of systems of generalized vector quasi-equilibrium J. Optim. Theory Appl. 130(3), (2006)

  24. Lin L.J., Still G. (2006) Mathematical programs with equilibrium constraints: the existence of feasible points. Optimization 55, 205–219

    Article  Google Scholar 

  25. Lin L.J., Yu Z.T. (2001) On some equilibrium problems for multimaps. J. Comput. Appl. Math. 129, 171–183

    Article  Google Scholar 

  26. Luc D.T. (1989) Theory of Vector Optimization Lectures. Notes in Economics and Mathematical Systems, vol. 319. Springer Verlag, Berlin, Germany

    Google Scholar 

  27. Luo Z.Q., Pang J.S., Ralph D. (1997) Mathematical Program with Equilibrium Constraint. Cambridge University Press, Cambridge

    Google Scholar 

  28. Mordukhovich B.S. (2004) Equilibrium problems with equilibrium constraints via multiobjective optimization. Optim. Methods Soft 19, 479–492

    Article  Google Scholar 

  29. Mordukhovich B.S. (2005) Variational Analysis and Generalized Differentiation, vol. I,II. Springer, Herlin, Heidelberg, New York

    Google Scholar 

  30. Robinson S.M. (1979) Generalized equation and their solutions, part I: basic theory. Math Program. Study 10, 128–141

    Google Scholar 

  31. Tan N.X. (1985) Quasi-variational inequalities in topological linear locally convex Hausdorff spaces. Math. Nachrichten 122, 231–245

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai-Jiu Lin.

Additional information

This research was supported by the National Science Council of the Republic of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, LJ. Systems of generalized quasivariational inclusions problems with applications to variational analysis and optimization problems. J Glob Optim 38, 21–39 (2007). https://doi.org/10.1007/s10898-006-9081-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-006-9081-5

Keywords

Navigation