Advertisement

Journal of Global Optimization

, Volume 32, Issue 3, pp 349–365 | Cite as

On Solving Nonconvex Optimization Problems by Reducing The Duality Gap

  • Hoang TuyEmail author
Article

Abstract

Lagrangian bounds, i.e. bounds computed by Lagrangian relaxation, have been used successfully in branch and bound bound methods for solving certain classes of nonconvex optimization problems by reducing the duality gap. We discuss this method for the class of partly linear and partly convex optimization problems and, incidentally, point out incorrect results in the recent literature on this subject.

Keywords

Branch and bound algorithm Convergence conditions Dual bound Lagrangian bound Partly convex programming Partly linear 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Khayyal, F.A., Larsen, C., Voorhis, T. 1995A relaxation method for nonconvex quadratically constrained quadratic programsJournal of Global Optimization6215230CrossRefGoogle Scholar
  2. 2.
    Ben-Tal, A.,  et al. 1994Global minimization by reducing the duality gapMathematical Programming63193212CrossRefGoogle Scholar
  3. 3.
    Dür, M. 2001Dual bounding procedures lead to convergent branch-and-bound algorithmsMathematical Programming Series A9111720010Google Scholar
  4. 4.
    Falk, J.E. 1969Lagrange multipliers and nonconvex programsSIAM Journal Control7534545CrossRefGoogle Scholar
  5. 5.
    Falk, J.E., Soland, R.M. 1969An algorithm for separable nonconvex programming problemsManagement Science15550569Google Scholar
  6. 6.
    Ekeland, I., Temam, R. 1976Convex analysis and variational problemsNorth-Holland, American ElsevierAmsterdam, New YorkGoogle Scholar
  7. 7.
    Floudas, C. (1999), Deterministic Global Optimization, Kluwer.Google Scholar
  8. 8.
    Shor, N.Z. (1998), Nondifferentiable Optimization and Polynomial Problems, Kluwer.Google Scholar
  9. 9.
    Shor, N.Z., Stetsenko, P.I. 1989Quadratic extremal problems and nondifferentiable optimizationNaukova DumkaKiev(in Russian).Google Scholar
  10. 10.
    Shor, N.Z., Stetsyuk, P.I. 2002Lagrangian bounds in multiextremal polynomial and discrete optimization problemsJournal of Global Optimization23141CrossRefGoogle Scholar
  11. 11.
    Thoai, N.V. 2000Duality bound method for the general quadratic programming problem with quadratic constraintsJournal of Optimization Theory and Applications107331354CrossRefGoogle Scholar
  12. 12.
    Thoai, N.V. 2002Convergence of duality bound method in partly convex programmingJournal of Global Optimization22263270CrossRefGoogle Scholar
  13. 13.
    Tuan, H.D., Apkarian, P., Nakashima, Y. 2000A new Lagrangian dual global optimization algorithm for solving bilinear matrix inequalitiesInternational Journal Robust Nonlinear Control10561578CrossRefGoogle Scholar
  14. 14.
    Tuy, H. 2004Minimax theorems revisitedInstitute of MathematicsHanoipreprintGoogle Scholar
  15. 15.
    Tuy, H. (1998), Convex Analysis and Global Optimization, Kluwer.Google Scholar
  16. 16.
    Tuy, H. (2000), On Some recent advances and applications of D.C. optimization. In Nguyen, V.H., Strodiot, J.J. and Tossings, P. (eds.) Optimization, Lecture Notes in Economics and Mathematical Systems. Vol. 481, Springer, pp. 473–497.Google Scholar
  17. 17.
    Tuy, H. 2002Wrong results in D.C. OptimizationInstitute of MathematicsHanoiPreprintGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institute of MathematicsHanoiVietnam

Personalised recommendations