Journal of Global Optimization

, Volume 33, Issue 2, pp 257–272 | Cite as

Generalized Nonlinear Lagrangian Formulation for Bounded Integer Programming

  • Yifan XuEmail author
  • Chunli Liu
  • Duan Li


Several nonlinear Lagrangian formulations have been recently proposed for bounded integer programming problems. While possessing an asymptotic strong duality property, these formulations offer a success guarantee for the identification of an optimal primal solution via a dual search. Investigating common features of nonlinear Lagrangian formulations in constructing a nonlinear support for nonconvex piecewise constant perturbation function, this paper proposes a generalized nonlinear Lagrangian formulation of which many existing nonlinear Lagrangian formulations become special cases.


duality gap integer programming Lagrangian relaxation nonlinear integer programming nonlinear Lagrangian formulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell, D.E., Shapiro, J.F. 1977A convergent duality theory for integer programmingOperations Research25419434Google Scholar
  2. 2.
    Fisher, M.L. 1981The Lagrangian relaxation method for solving integer programming problemsManagement Sciences27118Google Scholar
  3. 3.
    Geoffirion, A.M. 1974Lagrangian relaxation for integer programmingMathematical Programming Studies282114Google Scholar
  4. 4.
    Li, D. 1999Zero duality gap in integer programming: p-norm surrogate constraint methodOperations Research Letter258996CrossRefGoogle Scholar
  5. 5.
    Li, D., Sun, X.L. 2000Success guarantee of dual search in integer programming: p-th power Lagrangian methodJournal of Global Options18235254CrossRefGoogle Scholar
  6. 6.
    Li, D., White, D.J. 2000p-th power Lagrangian method for integer programmingAnnuals of Operations Research98151170CrossRefGoogle Scholar
  7. 7.
    Parker, R.G., Rardin, R.L. 1988Discrete OptimizationAcademic PressBostonGoogle Scholar
  8. 8.
    Shapiro, J.F. 1979A survey of Lagrangian techniques for discrete optimizationAnnals of Discrete Mathematics5113138Google Scholar
  9. 9.
    Sun, X.L., Li, D. 1999Logarithmic-exponential penalty formula for integer programmingApplied Mathematics Letter127377CrossRefGoogle Scholar
  10. 10.
    Sun, X.L., Li, D. 2000Asymptotic strong duality for bounded integer programming: A logarithmic-exponential dual formulationMath OR25625644CrossRefGoogle Scholar
  11. 11.
    Williams, H.P. 1996Duality in mathematics and integer programmingJOTA90257278CrossRefGoogle Scholar
  12. 12.
    Xu, Y.F., Li, D. 2002A non-linear Lagrangian dual for integer programmingOperations Research Letter30401407CrossRefGoogle Scholar
  13. 13.
    Yang, X.Q. and Goh, C.J. (2001), A nonlinear Lagrangian function for discrete optimization problems, In:Proceedings of the Workshop “From Local to Global Optimization”, Kluwer Academic Publishers, Dordrecht pp. 291–304.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.School of ManagementFudan UniversityShanghaiChina
  2. 2.Department of Systems Engineering and Engineering ManagementThe Chinese University of Hong KongShatin, Hong KongChina

Personalised recommendations