Advertisement

Journal of Global Optimization

, Volume 33, Issue 2, pp 273–298 | Cite as

Characterizations of Hartley Proper Efficiency in Nonconvex Vector Optimization

  • Gue Myung Lee
  • Do Sang Kim
  • Pham Huu Sach
Article

Keywords

Invexity Nonconvex program Proper efficiency Vector Optimization Infineness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benson, H.P., Morin, T.L. 1977The vector maximization problem: proper efficiency and stabilitySIAM Journal on Applied Mathematics326472CrossRefGoogle Scholar
  2. 2.
    Benson, H.P. 1979An improved definition of proper efficiency for vector maximization with respect to coneJournal of Mathematical Analysis and Applications71232241CrossRefGoogle Scholar
  3. 3.
    Borwein, J.M. 1977Proper efficient points for maximizations with respect to conesSIAM Journal on Control and Optimization155763CrossRefGoogle Scholar
  4. 4.
    Borwein, J.M. 1980The geometry of Pareto efficiency over cones Mathematische Operationforschung und Statistik SerOptimization11235248Google Scholar
  5. 5.
    Borwein, J.M., Zhuang, D.M. 1991Super efficiency in convex vector optimizationMathematical Methods of Operations Research35175184CrossRefGoogle Scholar
  6. 6.
    Borwein, J.M., Zhuang, D.M. 1993Super efficiency in vector optimizationTransactions of the American Mathematical Society338105122Google Scholar
  7. 7.
    Clarke, F.H. 1983Optimization and Nonsmooth AnalysisWiley-InterscienceNew YorkGoogle Scholar
  8. 8.
    Craven, B.D. 1978Mathematical Programming and Control TheoryJohn Wiley SonsNew YorkGoogle Scholar
  9. 9.
    Geoffrion, A.M. 1968Proper efficiency and the theory of vector maximizationJournal of Mathematical Analysis and Appilications22618630CrossRefGoogle Scholar
  10. 10.
    Guerraggio, A., Molho, E., Zaffaroni, A. 1994On the notion of proper efficiency in vector optimizationJournal of Optimization Theory and Applications82121CrossRefGoogle Scholar
  11. 11.
    Hartley, R. 1978On cone-efficiency, cone-convexity and cone-compactnessSIAM Journal on Applied Mathematics34211222CrossRefGoogle Scholar
  12. 12.
    Hanson, M.A. 1981On sufficiency of the Kuhn-Tucker conditionsJournal of Mathematical Analysis and Applications80545550CrossRefGoogle Scholar
  13. 13.
    Henig, M.I. 1982Proper efficiency with respect to conesJournal of Optimization Theory and Applications36387407CrossRefGoogle Scholar
  14. 14.
    Huang, X.H., Yang, X.Q. 2002On characterizations of proper efficiency for nonconvex multiobjective optimizationJournal of Global Optimization23213231CrossRefGoogle Scholar
  15. 15.
    Kuhn, H.W., Tucker, A.W. 1951Nonlinear programming, Proceedings of Second Berkeley Symposium on Mathematical Statistics and ProbabilityUniversity of California PressBerkeley, California481492Google Scholar
  16. 16.
    Li, Z.F. 1998Benson proper efficiency in the vector optimization of set–valued mapsJournal of Optimization Theory and Applications98623649CrossRefGoogle Scholar
  17. 17.
    Mehra, A. 2002Super efficiency in vector optimization with nearly convexlike set-valued mapsJournal of Mathematical Analysis and Appilications276815832CrossRefGoogle Scholar
  18. 18.
    Rong, W.D., Wu, Y.N. 1998Characterization of supper efficiency in cone-convexlike vector optimization with set-valued mapsMathematical Methods of Operations Research48247258CrossRefGoogle Scholar
  19. 19.
    Sach, P.H., Lee, G.M., Kim, D.S. 2003Infine functions nonsmooth alternative theorems and vector optimization problemsJournal of Global Optimization275181CrossRefGoogle Scholar
  20. 20.
    Sawaragi, Y., Nakayama, H., Tanino, T. 1985Theory of Multiobjective OptimizationAcademic PressNew YorkGoogle Scholar
  21. 21.
    Yang, X.M., Li, D., Wang, S.Y. 2001Near-Subconvexlikeness in vector optimization with set-valued functionsJournal of Optimization Theory and Applications110413427CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Gue Myung Lee
    • 1
  • Do Sang Kim
    • 1
  • Pham Huu Sach
    • 2
  1. 1.Department of Applied MathematicsPukyong National UniversityPusanRepublic of Korea
  2. 2.Hanoi Institute of MathematicsHanoiVietnam

Personalised recommendations