Blue Genes? Understanding and Mitigating Negative Consequences of Personalized Information about Genetic Risk for Depression

Abstract

Personalized genetic testing for vulnerability to mental disorders is expected to become increasingly common. It is therefore important to understand whether learning about one’s genetic risk for a mental disorder has negative clinical implications, and if so, how these might be counteracted. Among participants with depressive symptoms, we administered a sham biochemical test purportedly revealing participants’ level of genetic risk for major depression. Participants told that they carried a genetic predisposition to depression expressed significantly lower confidence in their ability to cope with depressive symptoms than participants told they did not carry this predisposition. A short intervention providing education about the non-deterministic nature of genes’ effects on depression fully mitigated this negative effect, however. Given the clinical importance of patient expectancies in depression, the notion that pessimism about one’s ability to overcome symptoms could be exacerbated by genetic information—which will likely become ever more widely available—represents cause for concern. Education and counseling about the malleability of genetic effects may be an important tool for counteracting clinically deleterious beliefs that can be evoked by genetic test results. Genetic counselors may be able to help patients avoid becoming demoralized by learning they have a genetic predisposition to depression by providing education about the non-deterministic role of biology in depression, and a brief audiovisual intervention appears to be an effective approach to delivering such education.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    Our modified version of the BDI-II demonstrated high internal consistency (reliability), Cronbach alpha = .94.

  2. 2.

    Participants could have provided low ratings of the saliva test’s accuracy and reliability for reasons other than suspicion of the test being fake—such as people’s tendency toward defensive processing of threatening health information (Etchegary and Perrier 2007), which may lead individuals to reject personalized messages that suggest they may be at risk for health problems. If this had been the reason some participants did not rate the saliva test as credible, though, there would likely have been more participants endorsing the credibility of the saliva test in the Gene-Absent condition than in the Gene-Present conditions (because the gene-absent feedback did not contain threatening information). On the contrary, among participants who scored at least 13 on the BDI-II there was no significant difference by condition in credibility ratings, F(2, 256) = .65, p = .53. Nonetheless, the present study did not directly measure the reasons people might have discredited the saliva test, and future research examining the causes of such reactions in depth would be highly valuable.

References

  1. Ahn, W., Proctor, C. C., & Flanagan, E. H. (2009). Mental health Clinicians' beliefs about the biological, psychological, and environmental bases of mental disorders. Cognitive Science, 33(2), 147–182. doi:10.1111/J.1551-6709.2009.01008.X.

    PubMed  PubMed Central  Article  Google Scholar 

  2. American Psychological Association. (2017). Ethical principles of psychologists and code of conduct. Retrieved from http://www.apa.org/ethics/code/ethics-code-2017.pdf

  3. Aspinwall, L. G., Taber, J. M., Leaf, S. L., Kohlmann, W., & Leachman, S. A. (2013). Melanoma genetic counseling and test reporting improve screening adherence among unaffected carriers 2 years later. Cancer Epidemiology, Biomarkers and Prevention, 22(10), 1687.

    PubMed  Article  Google Scholar 

  4. Austin, J. C., & Honer, W. G. (2005). The potential impact of genetic counseling for mental illness. Clinical Genetics, 67(2), 134–142. doi:10.1111/j.1399-0004.2004.00330.x.

    CAS  PubMed  Article  Google Scholar 

  5. Austin, J. C., & Honer, W. G. (2007). The genomic era and serious mental illness: A potential application for psychiatric genetic counseling. Psychiatric Services, 58(2), 254–261. doi:10.1176/ps.2007.58.2.254.

    PubMed  Article  Google Scholar 

  6. Baumrind, D. (1985). Research using intentional deception: Ethical issues revisited. American Psychologist, 40(2), 165–174. doi:10.1037/0003-066X.40.2.165.

    CAS  PubMed  Article  Google Scholar 

  7. Beck, A. T., & Clark, D. A. (1988). Anxiety and depression: An information processing perspective. Anxiety Research, 1(1), 23–36. doi:10.1080/10615808808248218.

    Article  Google Scholar 

  8. Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Development, 78(1), 246–263.

    PubMed  Article  Google Scholar 

  9. Boynton, M. H., Portnoy, D. B., & Johnson, B. T. (2013). Exploring the ethics and psychological impact of deception in psychological research. IRB, 35(2), 7–13.

    PubMed  PubMed Central  Google Scholar 

  10. Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon's mechanical Turk: A new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6(1), 3–5. doi:10.1177/1745691610393980.

    PubMed  Article  Google Scholar 

  11. Catanzaro, S. J., & Mearns, J. (1990). Measuring generalized expectancies for negative mood regulation: Initial scale development and implications. Journal of Personality Assessment, 54, 546–563.

    CAS  PubMed  Article  Google Scholar 

  12. Caulfield, T., Chandrasekharan, S., Joly, Y., & Cook-Deegan, R. (2013). Harm, hype and evidence: ELSI research and policy guidance. Genome Medicine, 5(3), 21–26. doi:10.1186/gm425.

    PubMed  PubMed Central  Article  Google Scholar 

  13. Collins, R. E., Wright, A. J., & Marteau, T. M. (2011). Impact of communicating personalized genetic risk information on perceived control over the risk: A systematic review. Genetics in Medicine, 13(4), 273–277.

    PubMed  Article  Google Scholar 

  14. Couzin, J. (2008). Gene tests for psychiatric risk polarize researchers. Science, 319(5861), 274–277. doi:10.1126/science.319.5861.274.

    CAS  PubMed  Article  Google Scholar 

  15. Dar-Nimrod, I., & Heine, S. J. (2011). Genetic essentialism: On the deceptive determinism of DNA. Psychological Bulletin, 137(5), 800–818. doi:10.1037/a0021860.

    PubMed  PubMed Central  Article  Google Scholar 

  16. Dar-Nimrod, I., Zuckerman, M., & Duberstein, P. R. (2013). The effects of learning about one’s own genetic susceptibility to alcoholism: A randomized experiment. Genetics in Medicine, 15(2), 132–138. doi:10.1038/gim.2012.111.

    CAS  PubMed  Article  Google Scholar 

  17. Dozois, D. J. A. (2010). Beck depression inventory-II. In I. B. Weiner & W. E. Craighead (Eds.), The Corsini encyclopedia of psychology (4th ed.). New York, NY: Wiley.

    Google Scholar 

  18. Drmanac, R. (2011). The advent of personal genome sequencing. Genetics in Medicine, 13(3), 188–190. doi:10.1097/GIM.0b013e31820f16e6.

    PubMed  Article  Google Scholar 

  19. Dweck, C. S. (2012). Mindsets and human nature: Promoting change in the Middle East, the schoolyard, the racial divide, and willpower. The American Psychologist, 67(8), 614–622. doi:10.1037/a0029783.

    PubMed  Article  Google Scholar 

  20. Epley, N., & Huff, C. (1998). Suspicion, affective response, and educational benefit as a result of deception in psychology research. Personality and Social Psychology Bulletin, 24(7), 759–768. doi:10.1177/0146167298247008.

    Article  Google Scholar 

  21. Etchegary, H., & Perrier, C. (2007). Information processing in the context of genetic risk: Implications for genetic-risk communication. Journal of Genetic Counseling, 16(4), 419–432. doi:10.1007/s10897-006-9082-z.

    PubMed  Article  Google Scholar 

  22. Frosch, D. L., Mello, P., & Lerman, C. (2005). Behavioral consequences of testing for obesity risk. Cancer Epidemiology, Biomarkers & Prevention, 14(6), 1485–1489. doi:10.1158/1055-9965.epi-04-0913.

    Article  Google Scholar 

  23. Gershon, E. S., & Alliey-Rodriguez, N. (2013). New ethical issues for genetic counseling in common mental disorders. American Journal of Psychiatry, 170(9), 968–976. doi:10.1176/appi.ajp.2013.12121558.

    PubMed  Article  Google Scholar 

  24. Gotlib, I. H., & Joormann, J. (2010). Cognition and depression: Current status and future directions. Annual Review of Clinical Psychology, 6, 285–312. doi:10.1146/annurev.clinpsy.121208.131305.

    PubMed  PubMed Central  Article  Google Scholar 

  25. Harris, A., Kelly, S. E., & Wyatt, S. (2013). Counseling customers: Emerging roles for genetic counselors in the direct-to-consumer genetic testing market. Journal of Genetic Counseling, 22(2), 277–288. doi:10.1007/s10897-012-9548-0.

    PubMed  Article  Google Scholar 

  26. Haslam, N. (2011). Genetic essentialism, neuroessentialism, and stigma: Commentary on Dar-nimrod and Heine (2011). Psychological Bulletin, 137(5), 819–824.

    PubMed  Article  Google Scholar 

  27. Hertwig, R., & Ortmann, A. (2008). Deception in experiments: Revisiting the arguments in its defense. Ethics & Behavior, 18(1), 59–92. doi:10.1080/10508420701712990.

    Article  Google Scholar 

  28. Higgins, E. T. (1999). 'Saying is believing' effects: When sharing reality about something biases knowledge and evaluations. In J. M. Levine, D. M. Messick, & L. L. Thompson (Eds.), Shared cognition in organizations: The management of knowledge (1st ed., pp. 33–49). Mahwah, NJ: Lawrence Erlbaum Associates Inc..

    Google Scholar 

  29. Hippman, C., Ringrose, A., Inglis, A., Cheek, J., Albert, A. Y. K., Remick, R., et al. (2016). A pilot randomized clinical trial evaluating the impact of genetic counseling for serious mental illnesses. Journal of Clinical Psychiatry, 77(2), e190–e198. doi:10.4088/JCP.14m09710.

    PubMed  PubMed Central  Article  Google Scholar 

  30. Hogarth, S., Javitt, G., & Melzer, D. (2008). The current landscape for direct-to-consumer genetic testing: Legal, ethical, and policy issues. Annual Review of Genomics and Human Genetics, 9(1), 161–182. doi:10.1146/annurev.genom.9.081307.164319.

    CAS  PubMed  Article  Google Scholar 

  31. Hollands, G. J., French, D. P., Griffin, S. J., Prevost, A. T., Sutton, S., King, S., et al. (2016). The impact of communicating genetic risks of disease on risk-reducing health behaviour: Systematic review with meta-analysis. British Medical Journal, 352, i1102.

  32. Hudson, K., Javitt, G., Burke, W., Byers, P., & Committee, A. S. I. (2007). ASHG statement on direct-to-consumer genetic testing in the United States. American Journal of Human Genetics, 81(3), 635–637.

    PubMed Central  Article  Google Scholar 

  33. Jemmott, J. B., Ditto, P. H., & Croyle, R. T. (1986). Judging health status: Effects of perceived prevalence and personal relevance. Journal of Personality and Social Psychology, 50(5), 899–905. doi:10.1037/0022-3514.50.5.899.

    PubMed  Article  Google Scholar 

  34. Kemp, J. J., Lickel, J. J., & Deacon, B. J. (2014). Effects of a chemical imbalance causal explanation on individuals’ perceptions of their depressive symptoms. Behaviour Research and Therapy, 56, 47–52. doi:10.1016/j.brat.2014.02.009.

    PubMed  Article  Google Scholar 

  35. Krell, H. V., Leuchter, A. F., Morgan, M., Cook, I. A., & Abrams, M. (2004). Subject expectations of treatment effectiveness and outcome of treatment with an experimental antidepressant. Journal of Clinical Psychiatry, 65(9), 1174–1179. doi:10.4088/JCP.v65n0904.

    PubMed  Article  Google Scholar 

  36. Kvaale, E. P., Haslam, N., & Gottdiener, W. H. (2013). The 'side effects' of medicalization: A meta-analytic review of how biogenetic explanations affect stigma. Clinical Psychology Review, 33(6), 782–794. doi:10.1016/j.cpr.2013.06.002.

    PubMed  Article  Google Scholar 

  37. Lebowitz, M. S., & Ahn, W. (2015). Emphasizing malleability in the biology of depression: Durable effects on perceived agency and prognostic pessimism. Behaviour Research and Therapy, 71, 125–130.

    PubMed  PubMed Central  Article  Google Scholar 

  38. Lebowitz, M. S., Ahn, W. K., & Nolen-Hoeksema, S. (2013). Fixable or fate? Perceptions of the biology of depression. Journal of Consulting and Clinical Psychology, 81(3), 518–527. doi:10.1037/a0031730.

    PubMed  PubMed Central  Article  Google Scholar 

  39. Madlensky, L., Trepanier, A. M., Cragun, D., Lerner, B., Shannon, K. M., & Zierhut, H. (2017). A rapid systematic review of outcomes studies in genetic counseling. Journal of Genetic Counseling, 1–18. doi:10.1007/s10897-017-0067-x.

  40. Marteau, T., Senior, V., Humphries, S. E., Bobrow, M., Cranston, T., Crook, M. A., et al. (2004). Psychological impact of genetic testing for familial hypercholesterolemia within a previously aware population: A randomized controlled trial. American Journal of Medical Genetics Part A, 128A(3), 285–293. doi:10.1002/ajmg.a.30102.

    PubMed  Article  Google Scholar 

  41. McBride, C. M., Koehly, L. M., Sanderson, S. C., & Kaphingst, K. A. (2010). The behavioral response to personalized genetic information: Will genetic risk profiles motivate individuals and families to choose more healthful behaviors? Annual Review of Public Health, 31(1), 89–103. doi:10.1146/annurev.publhealth.012809.103532.

    PubMed  Article  Google Scholar 

  42. Meiser, B., Peate, M., Levitan, C., Mitchell, P. B., Trevena, L., Barlow-Stewart, K., et al. (2016). A psycho-educational intervention for people with a family history of depression: Pilot results. Journal of Genetic Counseling, 1–10. doi:10.1007/s10897-016-0011-5.

  43. Meyer, B., Pilkonis, P. A., Krupnick, J. L., Egan, M. K., Simmens, S. J., & Sotsky, S. M. (2002). Treatment expectancies, patient alliance and outcome: Further analyses from the National Institute of Mental Health treatment of depression collaborative research program. Journal of Consulting and Clinical Psychology, 70(4), 1051–1055. doi:10.1037//0022-006x.70.4.1051.

    PubMed  Article  Google Scholar 

  44. Miu, A. S., & Yeager, D. S. (2015). Preventing symptoms of depression by teaching adolescents that people can change: effects of a brief incremental theory of personality intervention at 9-month follow-up. Clinical Psychological Science, 3(5), 726–743.

  45. Ortmann, A., & Hertwig, R. (2002). The costs of deception: Evidence from psychology. Experimental Economics, 5(2), 111–131. doi:10.1023/A:1020365204768.

    Article  Google Scholar 

  46. Persky, S., Kaphingst, K. A., Condit, C. M., & McBride, C. M. (2007). Assessing hypothetical scenario methodology in genetic susceptibility testing analog studies: A quantitative review. Genetics in Medicine, 9(11), 727–738.

    PubMed  Article  Google Scholar 

  47. Pescosolido, B. A., Martin, J. K., Long, J. S., Medina, T. R., Phelan, J. C., & Link, B. G. (2010). "a disease like any other"? A decade of change in public reactions to schizophrenia, depression, and alcohol dependence. The American Journal of Psychiatry, 167(11), 1321–1330. doi:10.1176/appi.ajp.2010.09121743.

    PubMed  PubMed Central  Article  Google Scholar 

  48. Phelan, J. C., Yang, L. H., & Cruz-Rojas, R. (2006). Effects of attributing serious mental illnesses to genetic causes on orientations to treatment. Psychiatric Services, 57(3), 382–387. doi:10.1176/appi.ps.57.3.382.

    PubMed  Article  Google Scholar 

  49. Rutherford, B. R., Wager, T. D., & Roose, S. P. (2010). Expectancy and the treatment of depression: A review of experimental methodology and effects on patient outcome. Current Psychiatry Reviews, 6(1), 1–10. doi:10.2174/157340010790596571.

    PubMed  PubMed Central  Article  Google Scholar 

  50. Rutherford, S., Zhang, X., Atzinger, C., Ruschman, J., & Myers, M. F. (2014). Medical management adherence as an outcome of genetic counseling in a pediatric setting. Genetics in Medicine, 16(2), 157–163. doi:10.1038/gim.2013.90.

    PubMed  Article  Google Scholar 

  51. Sanderson, S. C., Persky, S., & Michie, S. (2010). Psychological and behavioral responses to genetic test results indicating increased risk of obesity: Does the causal pathway from gene to obesity matter? Public Health Genomics, 13(1), 34–47.

    CAS  PubMed  Article  Google Scholar 

  52. Simon, G. E., & Perlis, R. H. (2010). Personalized medicine for depression: Can we match patients with treatments? American Journal of Psychiatry, 167(12), 1445–1455. doi:10.1176/appi.ajp.2010.09111680.

    PubMed  PubMed Central  Article  Google Scholar 

  53. Taber, J. M., Aspinwall, L. G., Stump, T. K., Kohlmann, W., Champine, M., & Leachman, S. A. (2015). Genetic test reporting enhances understanding of risk information and acceptance of prevention recommendations compared to family history-based counseling alone. Journal of Behavioral Medicine, 38(5), 740–753. doi:10.1007/s10865-015-9648-z.

    PubMed  PubMed Central  Article  Google Scholar 

  54. Uher, R., Perroud, N., Ng, M. Y. M., Hauser, J., Henigsberg, N., Maier, W., et al. (2010). Genome-wide pharmacogenetics of antidepressant response in the GENDEP project. American Journal of Psychiatry, 167(5), 555–564. doi:10.1176/appi.ajp.2009.09070932.

    PubMed  Article  Google Scholar 

  55. Uz, I., & Kemmelmeier, M. (2016). Can deception be desirable? Social Science Information, 56(1), 98–106. doi:10.1177/0539018416675070.

    Article  Google Scholar 

  56. Walton, G. M., & Cohen, G. L. (2011). A brief social-belonging intervention improves academic and health outcomes of minority students. Science, 331(6023), 1447.

    CAS  PubMed  Article  Google Scholar 

  57. Williams, L. M., Rush, A. J., Koslow, S. H., Wisniewski, S. R., Cooper, N. J., Nemeroff, C. B., et al. (2011). International study to predict optimized treatment for depression (iSPOT-D), a randomized clinical trial: Rationale and protocol. Trials, 12(1), 4. doi:10.1186/1745-6215-12-4.

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported (via grant number R01-HG007653) by the National Institutes of Health. The first author also received support from National Institutes of Health grant P50-HG007257. The funding agency had no role in the design of the study, the collection, analysis, and interpretation of data, or in writing the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Lebowitz.

Ethics declarations

Conflict of Interest

Matthew S. Lebowitz declares no conflict of interest.

Woo-kyoung Ahn declares no conflict of interest.

Human Studies and Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study.

Animal Studies

This article does not contain any studies with animals performed by any of the authors.

Electronic supplementary material

ESM 1

(DOCX 43 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lebowitz, M.S., Ahn, Wk. Blue Genes? Understanding and Mitigating Negative Consequences of Personalized Information about Genetic Risk for Depression. J Genet Counsel 27, 204–216 (2018). https://doi.org/10.1007/s10897-017-0140-5

Download citation

Keywords

  • Depression
  • Genetics
  • Health beliefs
  • Prognostic pessimism
  • Biological explanations