Skip to main content

Impact of Panel Gene Testing for Hereditary Breast and Ovarian Cancer on Patients

Abstract

Recent advances in next generation sequencing have enabled panel gene testing, or simultaneous testing for mutations in multiple genes for a clinical condition. With more extensive and widespread genetic testing, there will be increased detection of genes with moderate penetrance without established clinical guidelines and of variants of uncertain significance (VUS), or genetic variants unknown to either be disease-causing or benign. This study surveyed 232 patients who underwent genetic counseling for hereditary breast and ovarian cancer to examine the impact of panel gene testing on psychological outcomes, patient understanding, and utilization of genetic information. The survey used standardized instruments including the Impact of Event Scale (IES), Multidimensional Impact of Cancer Risk Assessment (MICRA), Satisfaction with Decision Instrument (SWD), Ambiguity Tolerance Scale (AT-20), genetics knowledge, and utilization of genetic test results. Study results suggested that unaffected individuals with a family history of breast or ovarian cancer who received positive results were most significantly impacted by intrusive thoughts, avoidance, and distress. However, scores were also modestly elevated among unaffected patients with a family history of breast and ovarian cancer who received VUS, highlighting the impact of ambiguous results that are frequent among patients undergoing genetic testing with large panels of genes. Potential risk factors for increased genetic testing-specific distress in this study included younger age, black or African American race, Hispanic origin, lower education level, and lower genetic knowledge and highlight the need for developing strategies to provide effective counseling and education to these communities, particularly when genetic testing utilizes gene panels that more commonly return VUS. More detailed pre-test education and counseling may help patients appreciate the probability of various types of test results and how results would be used clinically, and allow them to make more informed decisions about the type of genetic testing to select.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Antoniou, A., Pharoah, P. D. P., Narod, S., Risch, H. A., Eyfjord, J. E., Hopper, J. L., et al. (2003). Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: A combined analysis of 22 studies. American Journal of Human Genetics, 72(5), 1117–1130. doi:10.1086/375033.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Bjornslett, M., Dahl, A. A., Sorebo, O., & Dorum, A. (2015). Psychological distress related to BRCA testing in ovarian cancer patients. Familial Cancer, 14(4), 495–504. doi:10.1007/s10689-015-9811-2.

    Article  PubMed  Google Scholar 

  • Bradbury, A. R., Patrick-Miller, L. J., Egleston, B. L., DiGiovanni, L., Brower, J., Harris, D., et al. (2016). Patient feedback and early outcome data with a novel tiered-binned model for multiplex breast cancer susceptibility testing. Genetics in Medicine, 18(1), 25–33. doi:10.1038/gim.2015.19.

    Article  PubMed  Google Scholar 

  • Bubien, V., Bonnet, F., Brouste, V., Hoppe, S., Barouk-Simonet, E., David, A., et al. (2013). High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. Journal of Medical Genetics, 50(4), 255–263. doi:10.1136/jmedgenet-2012-101339.

    CAS  Article  PubMed  Google Scholar 

  • Cella, D., Hughes, C., Peterman, A., Chang, C. H., Peshkin, B. N., Schwartz, M. D., et al. (2002). A brief assessment of concerns associated with genetic testing for cancer: The multidimensional impact of cancer risk assessment (MICRA) questionnaire. Health Psychology, 21(6), 564–572. doi:10.1037//0278-6133.21.6.564.

    Article  PubMed  Google Scholar 

  • Chen, S., & Parmigiani, G. (2007). Meta-analysis of BRCA1 and BRCA2 penetrance. Journal of Clinical Oncology, 25(11), 1329–1333. doi:10.1200/JCO.2006.09.1066.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crotser, C. B., & Boehmke, M. (2009). Survivorship considerations in adults with hereditary breast and ovarian cancer syndrome: State of the science. Journal of Cancer Survivorship, 3(1), 21–42. doi:10.1007/s11764-008-0077-7.

    Article  PubMed  Google Scholar 

  • Culver, J. O., Brinkerhoff, C. D., Clague, J., Yang, K., Singh, K. E., Sand, S. R., et al. (2013). Variants of uncertain significance in BRCA testing: Evaluation of surgical decisions, risk perception, and cancer distress. Clinical Genetics, 84(5), 464–472. doi:10.1111/cge.12097.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • van Dijk, S., van Asperen, C. J., Jacobi, C. E., Vink, G. R., Tibben, A., Breuning, M. H., et al. (2004). Variants of uncertain clinical significance as a result of BRCA1/2 testing: Impact of an ambiguous breast cancer risk message. Genetic Testing, 8(3), 235–239. doi:10.1089/gte.2004.8.235.

    Article  PubMed  Google Scholar 

  • Douglas, H. A., Hamilton, R. J., & Grubs, R. E. (2009). The effect of BRCA gene testing on family relationships: A thematic analysis of qualitative interviews. Journal of Genetic Counseling, 18(5), 418–435. doi:10.1007/s10897-009-9232-1.

    Article  PubMed  Google Scholar 

  • Dunn, O. J. (1964). Multiple comparisons using rank sums. Technometrics, 6(3), 241. doi:10.2307/1266041.

    Article  Google Scholar 

  • Easton, D. F., Pharoah, P. D. P., Antoniou, A. C., Tischkowitz, M., Tavtigian, S. V., Nathanson, K. L., et al. (2015). Gene-panel sequencing and the prediction of breast-cancer risk. New England Journal of Medicine, 372(23), 2243–2257. doi:10.1056/NEJMsr1501341.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Frey, M. K., Kim, S. H., Bassett, R. Y., Martineau, J., Dalton, E., Chern, J. Y., et al. (2015). Rescreening for genetic mutations using multi-gene panel testing in patients who previously underwent non-informative genetic screening. Gynecologic Oncology, 139(2), 211–215. doi:10.1016/j.ygyno.2015.08.006.

    Article  PubMed  Google Scholar 

  • Graves, K. D., Vegella, P., Poggi, E. A., Peshkin, B. N., Tong, A., Isaacs, C., et al. (2012). Long-term psychosocial outcomes of BRCA1/BRCA2 testing: Differences across affected status and risk-reducing surgery choice. Cancer Epidemiology, Biomarkers & Prevention, 21(3), 445–455. doi:10.1158/1055-9965.EPI-11-0991.

    CAS  Article  Google Scholar 

  • Halbert, C. H., Stopfer, J. E., McDonald, J., Weathers, B., Collier, A., Troxel, A. B., et al. (2011). Long-term reactions to genetic testing for BRCA1 and BRCA2 mutations: Does time heal women's concerns? Journal of Clinical Oncology, 29(32), 4302–4306. doi:10.1200/JCO.2010.33.1561.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton, J. G., Lobel, M., & Moyer, A. (2009). Emotional distress following genetic testing for hereditary breast and ovarian cancer: A meta-analytic review. Health Psychology, 28(4), 510–518. doi:10.1037/a0014778.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hearle, N., Schumacher, V., Menko, F. H., Olschwang, S., Boardman, L. A., Gille, J. J. P., et al. (2006). Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clinical Cancer Research, 12(10), 3209–3215. doi:10.1158/1078-0432.CCR-06-0083.

    CAS  Article  PubMed  Google Scholar 

  • Heshka, J. T., Palleschi, C., Howley, H., Wilson, B., & Wells, P. S. (2008). A systematic review of perceived risks, psychological and behavioral impacts of genetic testing. Genetics in Medicine, 10(1), 19–32. doi:10.1097/GIM.0b013e31815f524f.

    Article  PubMed  Google Scholar 

  • Hirschberg, A. M., Chan-Smutko, G., & Pirl, W. F. (2015). Psychiatric implications of cancer genetic testing. Cancer, 121(3), 341–360. doi:10.1002/cncr.28879.

    Article  PubMed  Google Scholar 

  • Holmes-Rovner, M., Kroll, J., Schmitt, N., Rovner, D. R., Breer, M. L., Rothert, M. L., et al. (1996). Patient satisfaction with health care decisions: The satisfaction with decision scale. Medical Decision Making, 16(1), 58–64. doi:10.1177/0272989x9601600114.

    CAS  Article  PubMed  Google Scholar 

  • Hwang, S. J., Lozano, G., Amos, C. I., & Strong, L. C. (2003). Germline p53 mutations in a cohort with childhood sarcoma: Sex differences in cancer risk. American Journal of Human Genetics, 72(4), 975–983. doi:10.1086/374567.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ku, C. S., Cooper, D. N., Iacopetta, B., & Roukos, D. H. (2013). Integrating next-generation sequencing into the diagnostic testing of inherited cancer predisposition. Clinical Genetics, 83(1), 2–6. doi:10.1111/Cge.12028.

    CAS  Article  PubMed  Google Scholar 

  • Kurian, A. W., Hare, E. E., Mills, M. A., Kingham, K. E., McPherson, L., Whittemore, A. S., et al. (2014). Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. Journal of Clinical Oncology, 32(19), 2001–2009. doi:10.1200/JCO.2013.53.6607.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • LaDuca, H., Stuenkel, A. J., Dolinsky, J. S., Keiles, S., Tandy, S., Pesaran, T., et al. (2014). Utilization of multigene panels in hereditary cancer predisposition testing: Analysis of more than 2,000 patients. Genetics in Medicine, 16(11), 830–837. doi:10.1038/gim.2014.40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liaw, D., Marsh, D. J., Li, J., Dahia, P. L., Wang, S. I., Zheng, Z., et al. (1997). Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genetics, 16(1), 64–67. doi:10.1038/ng0597-64.

    CAS  Article  PubMed  Google Scholar 

  • Lincoln, S. E., Kobayashi, Y., Anderson, M. J., Yang, S., Desmond, A. J., Mills, M. A., et al. (2015). A systematic comparison of traditional and multigene panel testing for hereditary breast and ovarian cancer genes in more than 1000 patients. The Journal of Molecular Diagnostics, 17(5), 533–544. doi:10.1016/j.jmoldx.2015.04.009.

    Article  PubMed  Google Scholar 

  • Low, C. A., Bower, J. E., Kwan, L., & Seldon, J. (2008). Benefit finding in response to BRCA1/2 testing. Annals of Behavioral Medicine, 35(1), 61–69. doi:10.1007/s12160-007-9004-9.

    Article  PubMed  Google Scholar 

  • Lynch, H. T., Silva, E., Snyder, C., & Lynch, J. F. (2008). Hereditary breast cancer: Part I. Diagnosing hereditary breast cancer syndromes. The Breast Journal, 14(1), 3–13. doi:10.1111/j.1524-4741.2007.00515.x.

    Article  PubMed  Google Scholar 

  • MacDonald, A. P. (1970). Revised scale for ambiguity tolerance: Reliability and validity. Psychological Reports, 26(3), 791–798.

    Article  Google Scholar 

  • MacDonald, D. J., Sarna, L., Weitzel, J. N., & Ferrell, B. (2010). Women's perceptions of the personal and family impact of genetic cancer risk assessment: Focus group findings. Journal of Genetic Counseling, 19(2), 148–160. doi:10.1007/s10897-009-9267-3.

    Article  PubMed  Google Scholar 

  • Madanikia, S. A., Bergner, A., Ye, X., & Blakeley, J. O. (2012). Increased risk of breast cancer in women with NF1. American Journal of Medical Genetics. Part A, 158A(12), 3056–3060. doi:10.1002/ajmg.a.35550.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mavaddat, N., Peock, S., Frost, D., Ellis, S., Platte, R., Fineberg, E., et al. (2013). Cancer risks for BRCA1 and BRCA2 mutation carriers: Results from prospective analysis of EMBRACE. Journal of the National Cancer Institute, 105(11), 812–822. doi:10.1093/jnci/djt095.

    CAS  Article  PubMed  Google Scholar 

  • McCarthy, J. J., McLeod, H. L., & Ginsburg, G. S. (2013). Genomic medicine: A decade of successes, challenges, and opportunities. Science Translational Medicine, 5(189). doi:10.1126/scitranslmed.3005785.

  • Oberguggenberger, A., Sztankay, M., Morscher, R. J., Sperner-Unterweger, B., Weber, I., Hubalek, M., et al. (2016). Psychosocial outcomes and counselee satisfaction following genetic counseling for hereditary breast and ovarian cancer: A patient-reported outcome study. Journal of Psychosomatic Research, 89, 39–45. doi:10.1016/j.jpsychores.2016.08.005.

    Article  PubMed  Google Scholar 

  • Olivier, M., Goldgar, D. E., Sodha, N., Ohgaki, H., Kleihues, P., Hainaut, P., et al. (2003). Li-Fraumeni and related syndromes: Correlation between tumor type, family structure, and TP53 genotype. Cancer Research, 63(20), 6643–6650.

    CAS  PubMed  Google Scholar 

  • O'Neill, S. C., Demarco, T., Peshkin, B. N., Rogers, S., Rispoli, J., Brown, K., et al. (2006). Tolerance for uncertainty and perceived risk among women receiving uninformative BRCA1/2 test results. American Journal of Medical Genetics Part C-Seminars in Medical Genetics, 142C(4), 251–259. doi:10.1002/ajmg.c.30104.

    Article  Google Scholar 

  • O'Neill, S. C., Rini, C., Goldsmith, R. E., Valdimarsdottir, H., Cohen, L. H., & Schwartz, M. D. (2009). Distress among women receiving uninformative BRCA1/2 results: 12-month outcomes. Psycho-Oncology, 18(10), 1088–1096. doi:10.1002/pon.1467.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pharoah, P. D. P., Guilford, P., Caldas, C., & Consortiu, I. G. C. L. (2001). Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology, 121(6), 1348–1353. doi:10.1053/gast.2001.29611.

    CAS  Article  PubMed  Google Scholar 

  • Rainville, I. R., & Rana, H. Q. (2014). Next-generation sequencing for inherited breast cancer risk: Counseling through the complexity. Current Oncology Reports, 16: 371. doi:10.1007/S11912-013-0371-Z.

  • Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., et al. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405–424. doi:10.1038/gim.2015.30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter, S., Haroun, I., Graham, T. C., Eisen, A., Kiss, A., & Warner, E. (2013). Variants of unknown significance in BRCA testing: Impact on risk perception, worry, prevention and counseling. Annals of Oncology, 24, 69–74. doi:10.1093/annonc/mdt312.

    Article  Google Scholar 

  • Ringwald, J., Wochnowski, C., Bosse, K., Giel, K. E., Schaffeler, N., Zipfel, S., et al. (2016). Psychological distress, anxiety, and depression of cancer-affected BRCA1/2 mutation carriers: A systematic review. Journal of Genetic Counseling, 25(5), 880–891. doi:10.1007/s10897-016-9949-6.

    Article  PubMed  Google Scholar 

  • Robson, M., & Offit, K. (2007). Clinical practice. Management of an inherited predisposition to breast cancer. The New England Journal of Medicine, 357(2), 154–162. doi:10.1056/NEJMcp071286.

    CAS  Article  PubMed  Google Scholar 

  • Seminog, O. O., & Goldacre, M. J. (2015). Age-specific risk of breast cancer in women with neurofibromatosis type 1. British Journal of Cancer, 112(9), 1546–1548. doi:10.1038/bjc.2015.78.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Tan, M. H., Mester, J. L., Ngeow, J., Rybicki, L. A., Orloff, M. S., & Eng, C. (2012). Lifetime cancer risks in individuals with germline PTEN mutations. Clinical Cancer Research, 18(2), 400–407. doi:10.1158/1078-0432.CCR-11-2283.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Voorwinden, J. S., & Jaspers, J. P. (2015). Prognostic factors for distress after genetic testing for hereditary cancer. Journal of Genetic Counseling. doi:10.1007/s10897-015-9894-9.

    PubMed  PubMed Central  Google Scholar 

  • Walsh, T., Lee, M. K., Casadei, S., Thornton, A. M., Stray, S. M., Pennil, C., et al. (2010). Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proceedings of the National Academy of Sciences of the United States of America, 107(28), 12629–12633. doi:10.1073/pnas.1007983107.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Weiss, D. S., & Marmar, C. R. (1997). The impact of event scale-revised. In J. P. Wilson & T. M. Keane (Eds.), Assessing psychological trauma and PTSD (p. 399-411). New York: Guilford Press.

Download references

Acknowledgements

We would like to acknowledge the patients and their families who generously contributed their time to participation in our study. We would like to acknowledge David Cella for permitting and assisting in the use of the MICRA questionnaire in this study. This work was supported in part by NIA Grant T35 AG 044303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy K. Chung.

Ethics declarations

Conflict of Interest

Heidi S. Lumish declares that she has no conflict of interest.

Hallie Steinfeld declares that she has no conflict of interest.

Carrie Koval declares that she has no conflict of interest.

Donna Russo declares that she has no conflict of interest.

Elana Levinson declares that she has no conflict of interest.

Julia Wynn declares that she has no conflict of interest.

Wendy K. Chung declares that she has no conflict of interest.

Human Studies and Informed Consent Statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and nation) and with the Helsinski Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Animal Studies

No animal studies were carried out by the authors for this article.

Electronic supplementary material

ESM 1

(PDF 2273 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lumish, H.S., Steinfeld, H., Koval, C. et al. Impact of Panel Gene Testing for Hereditary Breast and Ovarian Cancer on Patients. J Genet Counsel 26, 1116–1129 (2017). https://doi.org/10.1007/s10897-017-0090-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10897-017-0090-y

Keywords

  • Genetic counseling
  • Genetic testing for cancer susceptibility
  • Breast cancer
  • Panel gene testing
  • MICRA
  • Cancer genetics
  • Hereditary breast and ovarian cancer