Journal of Genetic Counseling

, Volume 22, Issue 2, pp 164–174 | Cite as

Return of Genetic Results in the Familial Dilated Cardiomyopathy Research Project

  • Jill D. Siegfried
  • Ana Morales
  • Jessica D. Kushner
  • Emily Burkett
  • Jason Cowan
  • Ana Clara Mauro
  • Gordon S. Huggins
  • Duanxiang Li
  • Nadine Norton
  • Ray E. Hershberger
Professional Issues


The goal of the Familial Dilated Cardiomyopathy (FDC) Research Project, initiated in 1993, has been to identify and characterize FDC genetic cause. All participating individuals have been consented for the return of genetic results, an important but challenging undertaking. Since the inception of the Project we have enrolled 606 probands, and 269 of these had 1670 family members also enrolled. Each subject was evaluated for idiopathic dilated cardiomyopathy (IDC) and pedigrees were categorized as familial or sporadic. The coding regions of 14 genes were resequenced in 311 to 324 probands in five studies. Ninety-two probands were found to carry nonsynonymous rare variants absent in controls, and with Clinical Laboratory Improvement Amendment of 1988 (CLIA) compliant protocols, relevant genetic results were returned to these probands and their consented relatives by study genetic counselors and physicians in 353 letters. In 10 of the 51 families that received results >1 year ago, at least 23 individuals underwent CLIA confirmation testing for their family’s rare variant. Return of genetic results has been successfully undertaken in the FDC Research Project. This report describes the methods utilized in the process of returning research results. We use this information as a springboard for providing guidance to other genetic research groups and proposing future directions in this arena.


Dilated cardiomyopathy Genetics Family studies Return of results Genetic counseling 



We thank the more than 2000 probands and family members who have participated in our research program and the many professionals who have referred families to us, without whom this study would not be possible. We thank Katrina Abril and Chad Brodt for their assistance in the data preparation and analysis. This work was supported by an award from the National Institutes of Health (RO1-HL58626, Dr Hershberger).

The authors declare no conflicts of interest of any kind with this work.


  1. Ackerman, M. J., Priori, S. G., Willems, S., Berul, C., Brugada, R., Calkins, H., et al. (2011). HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies This document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm, 8(8), 1308–1339.PubMedCrossRefGoogle Scholar
  2. Bookman, E. B., Langehorne, A. A., Eckfeldt, J. H., Glass, K. C., Jarvik, G. P., Klag, M., et al. (2006). Reporting genetic results in research studies: summary and recommendations of an NHLBI working group. American Journal of Medical Genetics. Part A, 140(10), 1033–1040.PubMedCrossRefGoogle Scholar
  3. Burkett, E. L., & Hershberger, R. E. (2005). Clinical and genetic issues in familial dilated cardiomyopathy. Journal of the American College of Cardiology, 45(7), 969–981.PubMedCrossRefGoogle Scholar
  4. Caleshu, C., Day, S., Rehm, H. L., & Baxter, S. (2010). Use and interpretation of genetic tests in cardiovascular genetics. Heart, 96(20), 1669–1675.PubMedCrossRefGoogle Scholar
  5. Cheng, J., Morales, A., Siegfried, J. D., Li, D., Norton, N., Song, J., et al. (2010). SCN5A rare variants in familial dilated cardiomyopathy decrease peak sodium current depending on the common polymorphism H558R and splice variant Q1077del. Clin Trans Sci, 3, 287–294.CrossRefGoogle Scholar
  6. Cowan, J., Li, D., Gonzalez-Quintana, J., Morales, A., & Hershberger, R. E. (2010). Morphological analysis of 13 LMNA variants identified in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Circulation. Cardiovascular Genetics, 3(1), 6–14.PubMedCrossRefGoogle Scholar
  7. Crispell, K. A., Wray, A., Ni, H., Nauman, D. J., & Hershberger, R. E. (1999). Clinical profiles of four large pedigrees with familial dilated cardiomyopathy: preliminary recommendations for clinical practice. Journal of the American College of Cardiology, 34(3), 837–847.PubMedCrossRefGoogle Scholar
  8. Das, S., Bale, S. J., & Ledbetter, D. H. (2008). Molecular genetic testing for ultra rare diseases: models for translation from the research laboratory to the CLIA-certified diagnostic laboratory. Genetics in Medicine, 10(5), 332–336.PubMedCrossRefGoogle Scholar
  9. Fabsitz, R. R., McGuire, A., Sharp, R. R., Puggal, M., Beskow, L. M., Biesecker, L. G., et al. (2010). Ethical and practical guidelines for reporting genetic research results to study participants: updated guidelines from a National Heart, Lung, and Blood Institute working group. Circulation. Cardiovascular Genetics, 3(6), 574–580.PubMedCrossRefGoogle Scholar
  10. Fatkin, D., MacRae, C., Sasaki, T., Wolff, M., Porcu, M., Frenneaux, M., et al. (1999). Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. The New England Journal of Medicine, 341(23), 1715–1724.PubMedCrossRefGoogle Scholar
  11. Gollob, M. H., Blier, L., Brugada, R., Champagne, J., Chauhan, V., Connors, S., et al. (2011). Recommendations for the use of genetic testing in the clinical evaluation of inherited cardiac arrhythmias associated with sudden cardiac death: Canadian Cardiovascular Society/Canadian Heart Rhythm Society joint position paper. Canadian Journal of Cardiology, 27(2), 232–245.PubMedCrossRefGoogle Scholar
  12. Hanson, E., & Hershberger, R. E. (2001). Genetic counseling and screening issues in familial dilated cardiomyopathy. Journal of Genetic Counseling, 10(5), 397–415.CrossRefGoogle Scholar
  13. Hanson, E., Jakobs, P., Keegan, H., Coates, K., Bousman, S., Dienel, N., et al. (2002). Cardiac troponin T lysine-210 deletion in a family with dilated cardiomyopathy. Journal of Cardiac Failure, 8, 28–32.PubMedCrossRefGoogle Scholar
  14. Hayden, E. C. (2011). Secrets of the human genome disclosed. Nature, 478(7367), 17.PubMedCrossRefGoogle Scholar
  15. Hershberger, R. E., & Siegfried, J. D. (2011). State of the Art Review. Update 2011: clinical and genetic issues in familial dilated cardiomyopathy. Journal of the American College of Cardiology, 57(16), 1641–1649.PubMedCrossRefGoogle Scholar
  16. Hershberger, R. E., Hanson, E., Jakobs, P. M., Keegan, H., Coates, K., Bousman, S., et al. (2002). A novel lamin A/C mutation in a family with dilated cardiomyopathy, prominent conduction system disease, and need for permanent pacemaker implantation. American Heart Journal, 144(6), 1081–1086.PubMedCrossRefGoogle Scholar
  17. Hershberger, R. E., Cowan, J., & Morales, A. (2008a). LMNA-related dilated cardiomyopathy.
  18. Hershberger, R. E., Parks, S. B., Kushner, J. D., Li, D., Ludwigsen, S., Jakobs, P., et al. (2008b). Coding sequence mutations identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 patients with familial or idiopathic dilated cardiomyopathy. Clinical Translational Science, 1(1), 21–26.CrossRefGoogle Scholar
  19. Hershberger, R. E., Cowan, J., Morales, A., & Siegfried, J. D. (2009a). Progress with genetic cardiomyopathies: screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. Heart Failure, 2(3), 253–261.PubMedCrossRefGoogle Scholar
  20. Hershberger, R. E., Lindenfeld, J., Mestroni, L., Seidman, C. E., Taylor, M. R., & Towbin, J. A. (2009b). Genetic evaluation of cardiomyopathy–a Heart Failure Society of America practice guideline. Journal of Cardiac Failure, 15(2), 83–97.PubMedCrossRefGoogle Scholar
  21. Hershberger, R. E., Pinto, J. R., Parks, S. B., Kushner, J. D., Li, D., Ludwigsen, S., et al. (2009c). Clinical and functional characterization of TNNT2 mutations identified in patients with dilated cardiomyopathy. Circulation. Cardiovascular Genetics, 2(4), 306–313.PubMedCrossRefGoogle Scholar
  22. Hershberger, R. E., Morales, A., & Siegfried, J. D. (2010a). Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genetics in Medicine, 12(11), 655–667.PubMedCrossRefGoogle Scholar
  23. Hershberger, R. E., Norton, N., Morales, A., Li, D., Siegfried, J. D., & Gonzalez-Quintana, J. (2010b). Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circulation. Cardiovascular Genetics, 3(2), 155–161.PubMedCrossRefGoogle Scholar
  24. Ho, C. Y., & MacRae, C. A. (2009). Defining the pathogenicity of DNA sequence variation. Circulation. Cardiovascular Genetics, 2(2), 95–97.PubMedCrossRefGoogle Scholar
  25. Jakobs, P. M., Hanson, E., Crispell, K. A., Toy, W., Keegan, H., Schilling, K., et al. (2001). Novel lamin A/C mutations in two families with dilated cardiomyopathy and conduction system disease. Journal of Cardiac Failure, 7(3), 249–256.PubMedCrossRefGoogle Scholar
  26. Kaufman, D., Murphy, J., Scott, J., & Hudson, K. (2008). Subjects matter: a survey of public opinions about a large genetic cohort study. Genetics in Medicine, 10(11), 831–839.PubMedCrossRefGoogle Scholar
  27. Kushner, J. D., Nauman, D., Burgess, D., Ludwigsen, S., Parks, S., Pantely, G., et al. (2006). Clinical characteristics of 304 kindreds evaluated for familial dilated cardiomyopathy. Journal of Cardiac Failure, 12(6), 422–429.PubMedCrossRefGoogle Scholar
  28. Ledbetter, D. H., & Faucett, W. A. (2008). Issues in genetic testing for ultra-rare diseases: background and introduction. Genetics in Medicine, 10(5), 309–313.PubMedCrossRefGoogle Scholar
  29. Li, D., Morales, A., Gonzalez Quintana, J., Norton, N., Siegfried, J. D., Hofmeyer, M., et al. (2010). Identification of novel mutations In RBM20 in patients with dilated cardiomyopathy. Clin Trans Sci, 3(3), 90–97.CrossRefGoogle Scholar
  30. Meulenkamp, T. M., Gevers, S. J., Bovenberg, J. A., & Smets, E. M. (2011). Researchers' opinions towards the communication of results of biobank research: a survey study. European Journal of Human Genetics.Google Scholar
  31. Miller, F. A., Hayeems, R. Z., & Bytautas, J. P. (2010). What is a meaningful result? Disclosing the results of genomic research in autism to research participants. European Journal of Human Genetics, 18(8), 867–871.PubMedCrossRefGoogle Scholar
  32. Morales, A., Cowan, J., Dagua, J., & Hershberger, R. E. (2008). Family history: an essential tool for cardiovascular genetic medicine. Congestive Heart Failure, 14(1), 37–45.PubMedCrossRefGoogle Scholar
  33. Morales, A., Painter, T., Li, R., Siegfried, J. D., Li, D., Norton, N., et al. (2010a). Rare variant mutations in pregnancy-associated or peripartum cardiomyopathy. Circulation, 121(20), 2176–2182.PubMedCrossRefGoogle Scholar
  34. Morales, A., Pinto, J. R., Siegfried, J., Li, D., Norton, N., Hofmeyer, M., et al. (2010b). Late onset sporadic dilated cardiomyopathy caused by a cardiac troponin T mutation. Clinical and Translational Science, 3(5), 219–226.PubMedCrossRefGoogle Scholar
  35. Murphy, J., Scott, J., Kaufman, D., Geller, G., LeRoy, L., & Hudson, K. (2008). Public expectations for return of results from large-cohort genetic research. The American Journal of Bioethics, 8(11), 36–43.PubMedCrossRefGoogle Scholar
  36. Norton, N., Li, D., Reider, M. J., Siegfried, J. D., Rampersaud, E., Zuchner, S., et al. (2011). Genome-wide studies of copy number variation and exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy. American Journal of Human Genetics, 88, 273–282.PubMedCrossRefGoogle Scholar
  37. Parks, S. B., Kushner, J. D., Nauman, D., Burgess, D., Ludwigsen, S., Peterson, A., et al. (2008). Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. American Heart Journal, 156(1), 161–169.PubMedCrossRefGoogle Scholar
  38. Richards, C. S., Bale, S., Bellissimo, D. B., Das, S., Grody, W. W., Hegde, M. R., et al. (2008). ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. Genetics in Medicine, 10(4), 294–300.PubMedCrossRefGoogle Scholar
  39. Rope, A. F., Wang, K., Evjenth, R., Xing, J., Johnston, J. J., Swensen, J. J., et al. (2011). Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency. American Journal of Human Genetics, 89(1), 28–43.PubMedCrossRefGoogle Scholar
  40. Trinidad, S. B., Fullerton, S. M., Ludman, E. J., Jarvik, G. P., Larson, E. B., & Burke, W. (2011). Research ethics. Research practice and participant preferences: the growing gulf. Science, 331(6015), 287–288.PubMedCrossRefGoogle Scholar

Copyright information

© National Society of Genetic Counselors, Inc. 2012

Authors and Affiliations

  • Jill D. Siegfried
    • 1
    • 6
  • Ana Morales
    • 1
  • Jessica D. Kushner
    • 2
  • Emily Burkett
    • 3
  • Jason Cowan
    • 4
  • Ana Clara Mauro
    • 1
  • Gordon S. Huggins
    • 5
  • Duanxiang Li
    • 1
  • Nadine Norton
    • 1
  • Ray E. Hershberger
    • 1
    • 7
  1. 1.Cardiovascular DivisionUniversity of Miami Miller School of MedicineMiamiUSA
  2. 2.Division of Cardiovascular MedicineOregon Health & Science UniversityPortlandUSA
  3. 3.Legacy Medical GroupMaternal-Fetal MedicinePortlandUSA
  4. 4.Cincinnati Children’s Hospital Medical CenterCincinnatiUSA
  5. 5.MCRI Center for Translational GenomicsTufts Medical Center and Tufts University School of MedicineBostonUSA
  6. 6.Ambry Genetics CorporationAliso ViejoUSA
  7. 7.Division of Human Genetics, Dorothy M. Davis Heart and Lung Research InstituteThe Wexner Medical Center at The Ohio State UniversityColumbusUSA

Personalised recommendations