Skip to main content

Advertisement

Log in

Vitamin B6 Cofactor Pyridoxal 5’-phosphate Conjugated Papain-Stabilized Fluorescent Gold Nanoclusters for Switch-on Detection of Zinc(II)

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this study, fluorescent gold nanoclusters (AuNCs) conjugated with pyridoxal-5-phosphate (PLP) were synthesized, characterized, and used for Zn2+ fluorescence turn-on sensing. PLP was conjugated over the surface of papain-stabilized fluorescent gold nanoclusters (pap-AuNCs; λex = 380 nm, λem = 670 nm) by forming imine linkage. Due to this modification, the red color emitting pap-AuNCs changed to orange color emitting nanoclusters PLP_pap-AuNCs. The nano-assembly PLP_pap-AuNCs detect Zn2+ selectively by showing a notable fluorescence enhancement at 477 nm. Zn2+ detection with PLP_pap-AuNCs was quick and easy, with an estimated detection limit of 0.14 µM. Further, paper strips and cotton buds coated with PLP_pap-AuNCs were developed for affordable on-site visual detection of Zn2+. Finally, the detection of Zn2+ in actual environmental water samples served as validation of the usefulness of PLP_pap-AuNCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Rajamanikandan R, Sasikumar K, Kosame S, Ju H (2023) Optical sensing of toxic cyanide anions using Noble Metal nanomaterials. Nanomaterials 13:290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rajamanikandan R, Shanmugaraj K, Ilanchelian M, Ju H (2023) Cysteamine-decorated gold nanoparticles for plasmon-based colorimetric on-site sensors for detecting cyanide ions using the smart-phone color ratio and for catalytic reduction of 4-nitrophenol. Chemosphere 316:137836

    Article  CAS  PubMed  Google Scholar 

  3. Rajamanikandan R, Ilanchelian M, Ju H (2023) Highly selective uricase-based quantification of Uric Acid using hydrogen peroxide sensitive Poly-(vinylpyrrolidone) templated copper nanoclusters as a fluorescence probe. Chemosensors 11:268

    Article  CAS  Google Scholar 

  4. Dash PP, Ghosh AK, Mohanty P, Behura R, Behera S, Jali BR, Sahoo SK (2024) Advances on fluorescence chemosensors for selective detection of water. Talanta 275:126089

    Article  CAS  PubMed  Google Scholar 

  5. Zhang L, Wang E (2014) Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9(1):132–157

    Article  CAS  Google Scholar 

  6. Sahoo SK, Sharma D, Bera RK, Crisponi G, Callan JF (2012) Iron(III) selective molecular and supramolecular fluorescent probes. Chem Soc Rev 41(21):7195–7227

    Article  CAS  PubMed  Google Scholar 

  7. Sahoo SK, Kim G-D, Choi H-J (2016) Optical sensing of anions using C3v-symmetric tripodal receptors. J Photochem Photobiol C: Photochem 27:30–53

    Article  CAS  Google Scholar 

  8. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205(1):3–40

    Article  CAS  Google Scholar 

  9. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3(12):906–918

    Article  CAS  PubMed  Google Scholar 

  10. Prasad AS (2009) Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metabolic Care 12(6):646–652

    Article  CAS  Google Scholar 

  11. Shankar AH, Prasad AS (1998) Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 68(2):447S–463S

    Article  CAS  PubMed  Google Scholar 

  12. Pastorekova S, Parkkila S, Pastorek J, Supuran CT (2004) Review article. J Enzyme Inhib Med Chem 19(3):199–229

    Article  CAS  PubMed  Google Scholar 

  13. Reid MF, Fewson CA (1994) Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol 20(1):13–56

    Article  CAS  PubMed  Google Scholar 

  14. Sandstead HH (1994) Understanding zinc: recent observations and interpretations. J Lab Clin Med 124(3):322–327

    CAS  PubMed  Google Scholar 

  15. Arthur B, Chausmer S (1998) Zinc, insulin and diabetes. J Am Coll Nutri 17(2):109–115

    Article  Google Scholar 

  16. Ghosh SK, Kim P, Zhang X-a, Yun S-H, Moore A, Lippard SJ, Medarova Z (2010) A novel imaging approach for early detection of prostate cancer based on endogenous zinc sensing. Cancer Res 70(15):6119–6127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dean KM, Qin Y, Palmer AE (2012) Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes. Biochim et Biophys Acta (BBA)-Molecular Cell Res 1823(9):1406–1415

    Article  CAS  Google Scholar 

  18. Pluth MD, Tomat E, Lippard SJ (2011) Biochemistry of mobile zinc and nitric oxide revealed by fluorescent sensors. Annu Rev Biochem 80:333–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duan X, Sun R, Fang J (2017) On-line continuous generation of zinc chelates in the vapor phase by reaction with sodium dithiocarbamates and determination by atomic fluorescence spectrometry. Spectrochimica Acta Part B: at Spectrosc 128:11–16

    Article  CAS  Google Scholar 

  20. Binet MR, Ma R, McLeod CW, Poole RK (2003) Detection and characterization of zinc-and cadmium-binding proteins in Escherichia coli by gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry. Anal Biochem 318(1):30–38

    Article  CAS  PubMed  Google Scholar 

  21. Dueraning A, Kanatharana P, Thavarungkul P, Limbut W (2016) An environmental friendly electrode and extended cathodic potential window for anodic stripping voltammetry of zinc detection. Electrochim Acta 221:133–143

    Article  CAS  Google Scholar 

  22. Xu Z, Yoon J, Spring DR (2010) Fluorescent chemosensors for Zn(2+). Chem Soc Rev 39:1996–2006

    Article  CAS  PubMed  Google Scholar 

  23. Sahoo SK (2021) Chromo-fluorogenic sensing using vitamin B6 cofactors and derivatives: a review. New J Chem 45:8874–8897

    Article  CAS  Google Scholar 

  24. Fogle EJ, Liu W, Woon S-T, Keller JW, Toney MD (2005) Role of Q52 in catalysis of decarboxylation and transamination in dialkylglycine decarboxylase. Biochemistry 44(50):16392–16404

    Article  CAS  PubMed  Google Scholar 

  25. Sun S, Toney MD (1999) Evidence for a two-base mechanism involving tyrosine-265 from arginine-219 mutants of alanine racemase. Biochemistry 38(13):4058–4065

    Article  CAS  PubMed  Google Scholar 

  26. Du Y-L, Ryan KS (2019) Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat Prod Rep 36(3):430–457

    Article  CAS  PubMed  Google Scholar 

  27. Eliot AC, Kirsch JF (2004) Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem 73(1):383–415

    Article  CAS  PubMed  Google Scholar 

  28. Toney MD (2005) Reaction specificity in pyridoxal phosphate enzymes. Arch Biochem Biophys 433(1):279–287

    Article  CAS  PubMed  Google Scholar 

  29. Schneider G, Käck H, Lindqvist Y (2000) The manifold of vitamin B6 dependent enzymes. Structure 8(1):R1–R6

    Article  CAS  PubMed  Google Scholar 

  30. Parra M, Stahl S, Hellmann H (2018) Vitamin B6 and its role in cell metabolism and physiology. Cells 7(7):84

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ueland PM, Ulvik A, Rios-Avila L, Midttun Ø, Gregory JF (2015) Direct and functional biomarkers of vitamin B6 status. Annu Rev Nutr 35:33–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thiamin R (1998) Dietary reference intakes for Thiamin, Riboflavin, Niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and Choline1. National Academies Press (US), Washington (DC)

    Google Scholar 

  33. Merete C, Falcon LM, Tucker KL (2008) Vitamin B6 is associated with depressive symptomatology in Massachusetts elders. J Am Coll Nutr 27(3):421–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Malouf R, Evans JG (2003) The effect of vitamin B6 for cognition. Cochrane Database Syst Reviews (4), CD004393

  35. Qian B, Shen S, Zhang J, Jing P (2017) Effects of vitamin B6 deficiency on the composition and functional potential of T cell populations. J Immunol Res 2017:2197975

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ueland PM, McCann A, Midttun Ø, Ulvik A (2017) Inflammation, vitamin B6 and related pathways. Mol Aspects Med 53:10–27

    Article  CAS  PubMed  Google Scholar 

  37. Scott K, Zeris S, Kothari MJ (2008) Elevated B6 levels and peripheral neuropathies. Electromyogr Clin Neurophysiol 48(5):219–223

    CAS  PubMed  Google Scholar 

  38. Clayton PT (2006) B6-responsive disorders: a model of vitamin dependency. J Inherit Metab Dis 29(2):317–326

    Article  CAS  PubMed  Google Scholar 

  39. Hyotanishi M, Isomura Y, Yamamoto H, Kawasaki H, Obora Y (2011) Surfactant-free synthesis of palladium nanoclusters for their use in catalytic cross-coupling reactions. Chem Commun 47(20):5750–5752

    Article  CAS  Google Scholar 

  40. Bhardwaj V, Anand T, Choi H-J, Sahoo SK (2019) Sensing of Zn(II) and nitroaromatics using salicyclaldehyde conjugated lysozyme-stabilized fluorescent gold nanoclusters. Microchem J 151:104227

    Article  CAS  Google Scholar 

  41. Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131(3):888–889

    Article  CAS  PubMed  Google Scholar 

  42. Chang H-C, Chang Y-F, Fan N-C, Ho J-aA, Interfaces (2014) Facile preparation of high-quantum-yield gold nanoclusters: application to probing mercuric ions and biothiols. ACS Appl Mater Interfaces 6(21):18824–18831

    Article  CAS  PubMed  Google Scholar 

  43. Pramanik G, Humpolickova J, Valenta J, Kundu P, Bals S, Bour P, Dracinsky M, Cigler P (2018) Gold nanoclusters with bright near-infrared photoluminescence. Nanoscale 10(8):3792–3798

    Article  CAS  PubMed  Google Scholar 

  44. Wu Z, Jin R (2010) On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett 10(7):2568–2573

    Article  CAS  PubMed  Google Scholar 

  45. Chen Y, Qiao J, Liu Q, Zhang M, Qi L (2018) Fluorescence turn-on assay for detection of serum D-penicillamine based on papain@ AuNCs-Cu2 + complex. Anal Chim Acta 1026:133–139

    Article  CAS  PubMed  Google Scholar 

  46. Tripathi A, Ghosh AK, Sahoo SK (2024) Smartphone-assisted cost-effective approach for detecting mercury(II) using papain stabilized fluorescent gold nanoclusters. Inorg Chim Acta 567:122059

    Article  CAS  Google Scholar 

  47. Hambarde G, Bothra S, Upadhyay Y, Bera RK, Sahoo SK (2019) m-Dinitrobenzene directed aggregation-induced emission enhancement of cysteine modified fluorescent copper nanoclusters. Microchem J 147:899–904

    Article  CAS  Google Scholar 

  48. Nakum R, Ghosh AK, Jali BR, Sahoo SK (2024) Fluorescent ovalbumin-functionalized gold nanocluster as a highly sensitive and selective sensor for relay detection of salicylaldehyde, Hg(II) and folic acid. Spectrochim Acta A 313:124143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. The Investigation, Validation, Formal analysis, Data curation, Writing-original draft were performed by Jayant Chaudhary and Aditi Tripathi. The Conceptualization, Resources, Supervision, and Writing-review & editing were performed by Suban K Sahoo.

Corresponding author

Correspondence to Suban K. Sahoo.

Ethics declarations

Ethical Approval

Not applicable as the study does not include any use of animals and humans.

Consent to Publish

Not applicable.

Consent to Participate

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, J., Tripathi, A. & Sahoo, S.K. Vitamin B6 Cofactor Pyridoxal 5’-phosphate Conjugated Papain-Stabilized Fluorescent Gold Nanoclusters for Switch-on Detection of Zinc(II). J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03849-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03849-9

Keywords

Navigation