Skip to main content
Log in

Unusually Sensitive Solid State Emissive 1,8-naphthalimide for Detection of Acid Vapors in Turn-off Mode and Base Vapors in Turn-on Mode

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A 4-amino-1,8-naphthalimide containing tetramethylpiperidine in N-position was synthesized. The prepared 1,8-naphthalimide was found to possess bright yellow-green fluorescence in a solid state, which could be switched-off in the presence of acid vapors and then switched-on after exposure on base vapors. The observed fluorescence quenching or enhancement, respectively, was more than 10-fold. This behavior was quite opposite to that of the similar 4-oxy-1,8-naphthalimide, in which a well-pronounced PET process operates. In addition, the observed fluorescence quenching was accompanied with color change from yellow to red. Based on these results, the reported 4-amino-1,8-naphthalimide was successfully applied as a reversible solid-state emissive chemosensing material for rapid detection of acid-base vapors for multiple usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the article.

Code Availability

Chemdraw, Origin.

Abbreviations

OLED:

Organic Light Emitting Diodes

ICT:

Intramolecular Charge Transfer

TICT:

Twisted Intramolecular Charge Transfer

PET:

Photoinduced Electron Transfer

FRET:

Fluorescence Resonance Energy Transfer

ESIPT:

Excited State Intramolecular Proton Transfer

AIE:

Aggregation Induced Emission

NMR:

Nuclear Magnetic Resonance

FT-IR:

Fourier Transform Infrared Spectroscopy

UV-VIS:

Ultraviolet Visible Spectroscopy

FQ:

Fluorescence Quenching

DMF:

Dimethylformamide

References

  1. Yarullin D, Zavalishin M, Gamov G, Lukanov M, Ksenofontov A, Bumagina N, Antina E (2023) Prediction of sensor ability based on chemical formula: possible approaches and pitfalls. Inorganics 11:158

    Article  CAS  Google Scholar 

  2. Shaikh A, Hlil A, Shaikh P, Hay A (2002) Poly(arylene ether)s containing 1,2,4-triazole and phthalimide or naphthalimide moieties joined by a N - N linkage. Macromolecules 35:8728–8737

    Article  CAS  Google Scholar 

  3. Li M, Liu Y, Duan R, Wei X, Yi Y, Wang Y, Chen C (2017) Aromatic-imide-based thermally activated delayed fluorescence materials for highly efficient organic light-emitting diodes. Angew Chem Int Ed Engl 56:8818–8822

    Article  CAS  PubMed  Google Scholar 

  4. Smolka R, Yordanov D, Nakashima K, Vala M, Krajčovič J, Weiter M, Georgiev A (2023) Control over rotary motion and multicolour switching in 3-hydroxyphthalimide fluorophores: an interplay between AIE and ESIPT. Dyes Pigm 215:111279

    Article  CAS  Google Scholar 

  5. Zhao Z, Hu Q, Liu W, Xiong X, Wang Z, Wang H (2023) A smartphone-available colorimetric and near-infrared fluorescence sensor for trace amounts of water detection in highly polar organic solvents. Dyes Pigm 213:111186

    Article  CAS  Google Scholar 

  6. Mardani H, Roghani-Mamaqani H, Shahi S, Roustanavi D (2023) Anti-counterfeiting inks based on Förster resonance energy transfer in microcrystalline cellulose-grafted poly(amidoamine) for artificial industries. ACS Appl Polym Mater 5:1092–1102

    Article  CAS  Google Scholar 

  7. Zagranyarski Y, Cheshmedzhieva D, Mutovska M, Ahmedova A, Stoyanov S (2023) Dioxepine-peri-annulated PMIs—synthesis and spectral and sensing properties. Sensors 23:2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou Y, Zhu L (2018) Involving synergy of green light and acidic responses in control of unimolecular multicolor luminescence. Chem Eur J 24:10306–10309

    Article  CAS  PubMed  Google Scholar 

  9. Ceroni P (2016) Design of phosphorescent organic molecules: old concepts under a new light. Chem 1:524–526

    Article  CAS  Google Scholar 

  10. Marinova N, Georgiev N, Bojinov V (2018) Synthesis and photophysical properties of novel 1,8-naphthalimide lightharvesting antennae based on benzyl aryl ether architecture. J Lumin 204:253–260

    Article  CAS  Google Scholar 

  11. Krupka O, Hudhomme P (2023) Recent advances in applications of fluorescent perylenediimide and perylenemonoimide dyes in bioimaging, photothermal and photodynamic therapy. Int J Mol Sci 24:6308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Georgiev N, Bakov V, Anichina K, Bojinov V (2023) Fluorescent probes as a tool in diagnostic and drug delivery systems. Pharmaceuticals 16:381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang D, Wang S, Yang F, Li Z, Huang W (2023) Visual inspection of acidic pH and bisulfite in white wine using a colorimetric and fluorescent probe. Food Chem 408:135200

    Article  CAS  PubMed  Google Scholar 

  14. Zhu J, Miao C, Wang X (2023) Designing a turn-on ultrasensitive fluorescent probe based on ICT-FRET for detection and bioimaging of hypochlorous acid. Spectrochim Acta Part A 294:122546

    Article  CAS  Google Scholar 

  15. Pršir K, Matić M, Grbić M, Mohr G, Krištafor S, Steinberg I (2023) Naphthalimide-piperazine derivatives as multifunctional on and off fluorescent switches for pH, Hg2+ and Cu2+ ions. Molecules 28:1275

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen S, Zhou M, Zhu L, Yang X, Zang L (2023) Architectures and mechanisms of perylene diimide-based optical chemosensors for pH probing. Chemosensors 11:293

    Article  CAS  Google Scholar 

  17. Chen X, Mei Q, Yu L, Ge H, Yue J, Zhang K, Hayat T, Alsaedi A, Wang S (2018) Rapid and on-site detection of uranyl ions via ratiometric fluorescence signals based on a smartphone platform. ACS Appl Mater Interfaces 10:42225–42232

    Article  CAS  PubMed  Google Scholar 

  18. Yang J, Li Z, Jia Q (2019) Design of dual-emission fluorescence sensor based on Cu nanoclusters with solvent-dependent effects: visual detection of water via a smartphone. Sens Actuators B: Chem 297:126807

    Article  CAS  Google Scholar 

  19. Placer L, Lavilla I, Pena-Pereira F, Bendicho C (2022) Bromine speciation by a paper-based sensor integrated with a citric acid/cysteamine fluorescent probe and smartphone detection. Sens Actuators B: Chem 358:131499

    Article  CAS  Google Scholar 

  20. Li W, Zhang X, Hu X, Shi Y, Li Z, Huang X, Zhang W, Zhang D, Zou X, Shi J (2021) A smartphone-integrated ratiometric fluorescence sensor for visual detection of cadmium ions. J Hazard Mater 408:124872

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Zhang Y, Wang J, Liang X-J (2019) Aggregation-induced emission (AIE) fluorophores as imaging tools to trace the biological fate of nano-based drug delivery systems. Adv Drug Deliv Rev 143:161–176

    Article  CAS  PubMed  Google Scholar 

  22. Wang S, Ren W, Hou J-T, Won M, An J, Chen X, Shu J, Kim J (2021) Fluorescence imaging of pathophysiological microenvironments. Chem Soc Rev 50:8887–8902

    Article  CAS  PubMed  Google Scholar 

  23. Han H-H, Tian H, Zang Y, Sedgwick A, Li J, Sessler J, He X-P, James T (2021) Small-molecule fluorescence-based, probes for interrogating major organ diseases. Chem Soc Rev 50:9391–9429

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Liang X, Yin J, Lin W (2021) Organic fluorescent probes for monitoring autophagy in living cells. Chem Soc Rev 50:102–119

    Article  CAS  PubMed  Google Scholar 

  25. Sun W, Li M, Fan J, Peng X (2019) Activity-based sensing and theranostic probes based on photoinduced electron transfer. Acc Chem Res 52:2818–2831

    Article  CAS  PubMed  Google Scholar 

  26. Ding F, Feng J, Zhang X, Sun J, Fan C, Ge Z (2021) Responsive optical probes for deep-tissue imaging: Photoacoustics and second near-infrared fluorescence. Adv Drug Deliv Rev 173:141–163

    Article  CAS  PubMed  Google Scholar 

  27. Georgiev N, Said A, Toshkova R, Tzoneva R, Bojinov V (2019) A novel water-soluble perylenetetracarboxylic diimide as a fluorescent pH probe: chemosensing, biocompatibility and cell imaging. Dyes Pigm 160:28–36

    Article  CAS  Google Scholar 

  28. Hayashi Y, Suzuki N, Maeda T, Fujiwara H, Yagi S (2021) Photophysical properties of 4-(5-methylthiophen-2-yl)pyridinium-cyclic enolate betaine dyes tuned by control of twisted intramolecular transfer. New J Chem 45:9770–9779

    Article  CAS  Google Scholar 

  29. Zhang H, Xu Z, Tao F, Yu W, Cui Y (2021) Enhanced photostability of aggregation induced emission by hydrophobic groups. Anal Chim Acta 1186:339076

    Article  CAS  PubMed  Google Scholar 

  30. Said A, Georgiev N, Bojinov V (2022) A novel dual naked eye colorimetric and fluorescent pH chemosensor and its ability to execute three INHIBIT based digital comparator. Dyes Pigm 205:110489

    Article  CAS  Google Scholar 

  31. Zheng P, Abdurahman A, Zhang Z, Feng Y, Zhang Y, Ai X, Li F, Zhang M (2021) A simple organic multi-analyte fluorescent prober: one molecule realizes the detection to DNT, TATP and sarin substitute gas. J Hazard Mater 409:124500

    Article  CAS  PubMed  Google Scholar 

  32. Krasteva P, Dimitrova M, Georgiev N, Bojinov V (2018) A novel 1,8-naphthalimide probe for selective determination of Hg2+ in a wide pH window. J Chem Technol Metall 53:150–158

    CAS  Google Scholar 

  33. Singh H, Bhargav G, Kumar S, Singh P (2018) Quadruple-signaling (PET, ICT, ESIPT, -C = N- rotation) mechanism-based dual chemosensor for detection of Cu2+ and Zn2+ ions: TRANSFER, INH and complimentary OR/NOR logic circuits. J Photochem Photobiol A: Chem 357:175–184

    Article  CAS  Google Scholar 

  34. Anand T, Kumar S, Sahoo S (2018) A new Al3+ selective fluorescent turn-on sensor based on hydrazide-naphthalic anhydride conjugate and its application in live cells imaging. Spectrochim Acta Part A 204:105–112

    Article  CAS  Google Scholar 

  35. Georgiev N, Asiri A, Qusti A, Alamry K, Bojinov V (2014) A pH sensitive and selective ratiometric PAMAM wavelength-shifting bichromophoric system based on PET, FRET and ICT. Dyes Pigm 102:35–45

    Article  CAS  Google Scholar 

  36. Li S, Zhao B, Kan W, Wang L, Song B, Chen S (20218) A off–on pH fluorescence probe derived from phenanthro[9,10-d]imidazol-fluorescein based on ESIPT and ICT. Res Chem Intermed 44:491–502

  37. Said A, Georgiev N, Bojinov V (2022) Low molecular weight probe for selective sensing of pH and Cu2+ working as three INHIBIT based digital comparator. J Fluoresc 32:405–417

    Article  CAS  PubMed  Google Scholar 

  38. García Á, Ochoa-Terán A, Tirado-Guízar A, Jara-Cortés J, Pina-Luis G, Santacruz Ortega H, Labastida-Galván V, Ordoñez M, Peón J (2022) Experimental and theoretical study of novel aminobenzamide–aminonaphthalimide fluorescent dyads with a FRET mechanism. RSC Adv 12:6192–6204

    Article  PubMed  PubMed Central  Google Scholar 

  39. Alamry K, Georgiev N, Abdullah El-Daly S, Taib L, Bojinov V (2015) A ratiometric rhodamine-naphthalimide pH selective probe built on the basis of a PAMAM light-harvesting architecture. J Lumin 158:50–59

    Article  CAS  Google Scholar 

  40. Ozdemir M (2020) Two colorimetric and fluorescent dual-channel chemosensors for the selective detection of pH in aqueous solutions. ChemistrySelect 5:14340–14348

    Article  CAS  Google Scholar 

  41. Georgiev N, Dimitrova M, Todorova Y, Bojinov V (2016) Synthesis, chemosensing properties and logic behaviour of a novel ratiometric 1,8-naphthalimide probe based on ICT and PET. Dyes Pigm 131:9–17

    Article  CAS  Google Scholar 

  42. Bakov V, Georgiev N, Bojinov V (2022) A novel fluorescent probe for determination of pH and viscosity based on a highly water-soluble 1,8-naphthalimide rotor. Molecules 27:7556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Refalo M, Spiteri J, Magri D (2018) Covalent attachment of a fluorescent ‘Pourbaix sensor’ onto a polymer bead for sensing in water. New J Chem 42:16474–16477

    Article  Google Scholar 

  44. de Silva A (2022) Crossing the divide: experiences of taking fluorescent PET (photoinduced electron transfer) sensing/switching systems from solution to solid. Dyes Pigm 204:110453

    Article  Google Scholar 

  45. Georgiev N, Bryaskova R, Ismail S, Philipova N, Uzunova V, Bakov V, Tzoneva R, Bojinov V (2021) Aggregation induced emission in 1,8-naphthalimide embedded nanomicellar architecture as a platform for fluorescent ratiometric pH-probe with biomedical applications. J Photochem Photobiol A: Chem 418:113380

    Article  CAS  Google Scholar 

  46. Kim H, Guo Z, Zhu W, Yoon J, Tian H (2011) Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem Soc Rev 40:79–93

    Article  CAS  PubMed  Google Scholar 

  47. Palma A, Tasior M, Frimannsson D, Vu T, Méallet-Renault R, O’Shea D (2009) New on-bead near-infrared fluorophores and fluorescent sensor constructs. Org Lett 11:3638–3641

    Article  CAS  PubMed  Google Scholar 

  48. García-Calvo J, Calvo-Gredilla P, Ibáñez-Llorente M, Romero D, Cuevas J, García-Herbosa G, Avella M, Torroba T (2018) Surface functionalized silica nanoparticles for the off–on fluorogenic detection of an improvised explosive, TATP, in a vapour flow. J Mater Chem A 6:4416–4423

    Article  Google Scholar 

  49. Dong W, Pan Y, Fritsch M, Scherf U (2015) High sensitivity sensing of nitroaromatic explosive vapors based on polytriphenylamines with AIE-active tetraphenylethylene side groups. J Polym Sci Part A: Polym Chem 53:1753–1761

    Article  CAS  Google Scholar 

  50. Sarkar K, Dhara K, Nandi M, Roy P, Bhaumik A, Banerjee P (2009) Selective zinc(II)-ion fluorescence sensing by a functionalized mesoporous material covalently grafted with a fluorescent chromophore and consequent biological applications. Adv Funct Mater 19:223–234

    Article  CAS  Google Scholar 

  51. Thapa P, Arnquist I, Byrnes N, Denisenko A, Foss F, Jones B, McDonald A, Nygren D, Woodruf K (2019) Barium chemosensors with dry-phase fluorescence for neutrinoless double beta decay. Sci Rep 9:15097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Georgiev N, Bakov V, Bojinov V (2019) A solid-state-emissive 1,8-naphthalimide probe based on photoinduced electron transfer and aggregation-induced emission. ChemistrySelect 4:4163–4167

    Article  CAS  Google Scholar 

  53. Georgiev N, Bakov V, Bojinov V (2022) Photoinduced electron transfer and aggregation-induced emission in 1,8-naphthalimide probes as a platform for detection of acid/base vapors. Photonics 9:994

    Article  CAS  Google Scholar 

  54. Georgiev N, Bojinov V (2010) Design, synthesis and photostability of novel 1,8-naphthalimide PAMAM light-harvesting dendrons. J Fluoresc 21:51–63

    Article  PubMed  Google Scholar 

  55. Marinova N, Georgiev N, Bojinov V (2013) Facile synthesis, sensor activity and logic behaviour of 4-aryloxy substituted 1,8-naphthalimide. J Photochem Photobiol A: Chem 254:54–61

    Article  CAS  Google Scholar 

  56. Georgiev N, Bojinov V (2012) Design, synthesis and sensor activity of a highly photostable blue emitting 1,8-naphthalimide. J Lumin 132:2235–2241

    Article  CAS  Google Scholar 

  57. Wang L, Wang G, Shang C, Kang R, Fang Y (2017) Naphthalimide-based fluorophore for soft anionic interface monitoring. ACS Appl Mater Interfaces 9:35419–35426

    Article  CAS  PubMed  Google Scholar 

  58. Georgiev N, Marinova N, Bojinov V (2020) Design and synthesis of light-harvesting rotor based on 1,8-naphthalimide units. J Photochem Photobiol A: Chem 401:112733

    Article  CAS  Google Scholar 

  59. de Silva A, Gunaratne H, Habib-Jiwan J-L, McCoy C, Rice T, Soumillion J-P (1995) New fluorescent model compounds for the study of photoinduced electron transfer: the influence of molecular electric field in the excited state. Angew Chem Int Ed Engl 34:1728–1731

    Article  Google Scholar 

  60. Georgiev N, Bojinov V, Nikolov P (2011) The design, synthesis and photophysical properties of two novel 1,8-naphthalimide fluorescent pH sensors based on PET and ICT. Dyes Pigm 88:350–357

    Article  CAS  Google Scholar 

  61. Frisch M, Trucks G, Schlegel H, Robb M, Cheeseman J, Scalmani G, Petersson G, Nakatsuji H, Li X, Caricato M, Bloino J, Janesko B, Gomperts R, Mennucci B, Ortiz J, Izmaylov A, Sonnenberg J, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Henderson T, Ranasinghe D, Zakrzewski V, Gao J, Zheng R, Liang W, Hada M, Ehara M, Toyota K, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Vreven T, Throssell K, Montgomery J Jr, Ogliaro F, Bearpark M, Heyd J, Brothers E, Staroverov V, Keith T, Kobayashi R, Raghavachari K, Rendell A, Burant J, Tomasi J, Cossi M, Millam J, Klene M, Adamo C, Ochterski J, Martin R, Morokuma K, Foresman J, Fox D (2019) R.C. 01 Gaussian 16. Gaussian Inc. Wallingford CT, No Title,.https://gaussian.com/citation/ (n.d.)

  62. Adamo C, Jacquemin D (2013) The calculations of excited-state properties with time-dependent density functional theory. Chem Soc Rev 42:845–856

    Article  CAS  PubMed  Google Scholar 

  63. Barone V (2012) Computational strategies for Spectroscopy: from small molecules to Nano Systems. John Wiley & Sons, Inc.

  64. Cui D, Qian X, Liu F, Zhang R (2004) Novel fluorescent pH sensors based on intramolecular hydrogen bonding ability of naphthalimide. Org Lett 6:2757–2760

    Article  CAS  PubMed  Google Scholar 

  65. Mati S, Chall S, Bhattacharya S (2015) Aggregation-induced fabrication of fluorescent organic nanorings: selective biosensing of cysteine and application to molecular logic gate. Langmuir 31:5025–5032

    Article  CAS  PubMed  Google Scholar 

  66. Soni M, Das S, Sahu P, Kar U, Rahaman A, Sarkar M (2013) Synthesis, photophysics, live cell imaging, and aggregation behavior of some structurally similar alkyl chain containing bromonaphthalimide systems: influence of alkyl chain length on the aggregation behavior. J Phys Chem C 117:14338–14347

    Article  CAS  Google Scholar 

  67. Silverstein R, Webster F, Kiemle D (2005) State spectrometric identification of organic compounds, 7th edition. John Wiley & Sons, Inc

  68. Li X, Chen H, Kirillov A, Xie Y, Shan C, Wang B, Shia C, Tang Y (2016) A paper-based lanthanide smart device for acid–base vapour detection, anti-counterfeiting and logic operations. Inorg Chem Front 3:1014–1020

    Article  CAS  Google Scholar 

  69. Martinez A, Phillips S, Whitesides G (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10

    Article  CAS  PubMed  Google Scholar 

  70. Nery E, Kubota L (2013) Sensing approaches on paper-based devices: a review. Anal Bioanal Chem 405:7573–7595

    Article  CAS  PubMed  Google Scholar 

  71. Cate D, Adkins J, Mettakoonpitak J, Henry C (2015) Recent developments in paper-based microfluidic devices. Anal Chem 87:19–41

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study is funded by the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project № BG-RRP-2.004-0002, “BiOrgaMCT”.

Author information

Authors and Affiliations

Authors

Contributions

Ventsislav V. Bakov: formal analysis, investigation (synthesis, photochemistry, spectral analysis); Nikolai I. Georgiev: conceptualization, methodology, formal analysis, writing - original draft preparation, funding acquisition; Vladimir B. Bojinov: conceptualization, writing - review and editing, supervision, funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Nikolai I. Georgiev or Vladimir B. Bojinov.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Informed Consent

Not applicable.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Institutional Review Board Statement

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakov, V.V., Georgiev, N.I. & Bojinov, V.B. Unusually Sensitive Solid State Emissive 1,8-naphthalimide for Detection of Acid Vapors in Turn-off Mode and Base Vapors in Turn-on Mode. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03755-0

Keywords

Navigation