Skip to main content
Log in

Ratiometric Sensing of Azithromycin and Sulfide Using Dual Emissive Carbon Dots: A Turn On-Off-On Approach

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel ratiometric fluorescence probe was developed for the determination of azithromycin (AZM) and sulfide ions based on the differential modulation of red emissive carbon dots (R-N@CDs) and blue emissive carbon dots (B-NS@CDs). The addition of sulfide anion selectively quenched the red emission of R-N@CDs while the blue emission of B-NS@CDs unaffected. Upon subsequent introduction of AZM to this R-N@CDs@sulfide system, the quenched red fluorescence was restored. Comprehensive characterization of the CDs was performed using UV-Vis, fluorescence, FTIR spectroscopy, XPS, and TEM. The proposed method exhibited excellent sensitivity and selectivity, with limits of detection of 0.33 µM for AZM and 0.21 µM for sulfide. Notably, this approach enabled direct detection of sulfide without requiring prior modulation of the CDs with metal ions, as is common in other reported methods. The ratiometric probe was successfully applied for the determination of AZM in biological fluids and sulfide in environmental water samples with high selectivity. This work presents the first fluorometric method for the detection of AZM in biological fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Wilms EB, Touw DJ, Heijerman HGM (2006) Pharmacokinetics of azithromycin in plasma, blood, Polymorphonuclear neutrophils and Sputum during Long-Term Therapy in patients with cystic fibrosis. Ther Drug Monit 28(2). https://doi.org/10.1097/01.ftd.0000195617.69721.a5

  2. Liu P, Allaudeen H, Chandra R, Phillips K, Jungnik A, Breen Jeanne D, Sharma A (2007) Comparative pharmacokinetics of azithromycin in serum and White Blood cells of healthy subjects receiving a single-dose extended-release regimen versus a 3-Day Immediate-Release Regimen. Antimicrob Agents Chemother 51(1):103–109. https://doi.org/10.1128/aac.00852-06

    Article  CAS  PubMed  Google Scholar 

  3. Lalak NJ, Morris DL (1993) Azithromycin Clinical Pharmacokinetics. Clin Pharmacokinet 25(5):370–374. https://doi.org/10.2165/00003088-199325050-00003

    Article  CAS  PubMed  Google Scholar 

  4. Olupot-Olupot P, Okiror W, Mnjalla H, Muhindo R, Uyoga S, Mpoya A, Williams T, terHeine R, Burger D, Urban B, Connon R, George E, Gibb D, Walker A, Maitland K (2023) Pharmacokinetics and pharmacodynamics of azithromycin in severe malaria bacterial co-infection in African children (TABS-PKPD): a protocol for a phase II randomised controlled trial [version 2; peer review: 2 approved]. 6(161). https://doi.org/10.12688/wellcomeopenres.16968.2

  5. Azithromycin (2016) In: Aronson JK (ed) Meyler’s Side effects of drugs (Sixteenth Edition). Elsevier, Oxford, pp 785–793. doi:https://doi.org/10.1016/B978-0-444-53717-1.00345-0

    Chapter  Google Scholar 

  6. Nunes MI, Kalinowski C, Godoi AFL, Gomes AP, Cerqueira M (2021) Hydrogen sulfide levels in the ambient air of municipal solid waste management facilities: a case study in Portugal. Case Stud Chem Environ Eng 4:100152. https://doi.org/10.1016/j.cscee.2021.100152

    Article  CAS  Google Scholar 

  7. Doujaiji B, Al-Tawfiq JA (2010) Hydrogen sulfide exposure in an adult male. Ann Saudi Med 30(1):76–80. https://doi.org/10.4103/0256-4947.59379

    Article  PubMed  PubMed Central  Google Scholar 

  8. Austigard ÅD, Svendsen K, Heldal KK (2018) Hydrogen sulphide exposure in waste water treatment. J Occup Med Toxicol 13(1):10. https://doi.org/10.1186/s12995-018-0191-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Al-Rimawi F, Kharoaf M (2010) Analysis of azithromycin and its related compounds by RP-HPLC with UV detection. J Chromatogr Sci 48(2):86–90. https://doi.org/10.1093/chromsci/48.2.86

    Article  CAS  PubMed  Google Scholar 

  10. Ghari T, Kobarfard F, Mortazavi SA (2013) Development of a simple RP-HPLC-UV method for determination of Azithromycin in Bulk and Pharmaceutical Dosage forms as an alternative to the USP Method. Iran J Pharm Research: IJPR 12(Suppl):57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bahrami G, Mohammadi B (2006) A new on-line, in-tube pre-column derivatization technique for high performance liquid chromatographic determination of azithromycin in human serum. J Chromatogr B 830(2):355–358. https://doi.org/10.1016/j.jchromb.2005.10.044

    Article  CAS  Google Scholar 

  12. Lawson LD, Wang ZJ, Hughes BG (1991) Identification and HPLC quantitation of the sulfides and dialk(en)yl thiosulfinates in commercial garlic products. Planta Med 57(4):363–370. https://doi.org/10.1055/s-2006-960119

    Article  CAS  PubMed  Google Scholar 

  13. Filist M, Buś-Kwaśnik K, Ksycińska H, Rudzki PJ (2014) Simplified LC–MS/MS method enabling the determination of azithromycin in human plasma after a low 100 mg dose administration. J Pharm Biomed Anal 100:184–189. https://doi.org/10.1016/j.jpba.2014.07.015

    Article  CAS  PubMed  Google Scholar 

  14. Mitchell TW, Savage JC, Gould DH (1993) High-performance liquid chromatography detection of sulfide in tissues from sulfide-treated mice. J Appl Toxicol 13(6):389–394. https://doi.org/10.1002/jat.2550130605

    Article  CAS  PubMed  Google Scholar 

  15. Suhagia B, Shah S, Rathod I, Patel H, Doshi K (2006) Determination of azithromycin in pharmaceutical dosage forms by Spectrophotometric method. Indian J Pharm Sci 68. https://doi.org/10.4103%2F0250-474X.107076

  16. Paula CERd, Almeida VGK, Cassella RJ (2010) Novel spectrophotometric method for the determination of azithromycin in pharmaceutical formulations based on its charge transfer reaction with quinalizarin. J Braz Chem Soc 21. https://doi.org/10.1590/S0103-50532010000900010

  17. Rachidi M, Elharti J, Digua K, Cherrah* Y, Bouklouze* A (2006) New Spectrophotometric Method for Azithromycin determination. Anal Lett 39(9):1917–1926. https://doi.org/10.1080/00032710600721720

    Article  CAS  Google Scholar 

  18. Guenther EA, Johnson KS, Coale KH (2001) Direct Ultraviolet Spectrophotometric determination of total sulfide and iodide in Natural Waters. Anal Chem 73(14):3481–3487. https://doi.org/10.1021/ac0013812

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Z, Li Z, Wang J, Wu Z, Fu Y (2023) Solvothermal synthesis of nitrogen-doped carbon quantum dots for the sensitive detection of azithromycin. Nanotechnology 34(4):045503. https://doi.org/10.1088/1361-6528/ac9d44

    Article  CAS  Google Scholar 

  20. Almeida VGK, Braga VSM, Pacheco WF, Cassella RJ (2013) Fluorescence determination of azithromycin in Pharmaceutical formulations by using the Synchronous scanning Approach after its Acid Derivatization. J Fluoresc 23(1):31–39. https://doi.org/10.1007/s10895-012-1111-8

    Article  CAS  PubMed  Google Scholar 

  21. Moustafa RM, Talaat W, Youssef RM, Kamal MF (2023) Carbon dots as fluorescent nanoprobes for assay of some non-fluorophoric nitrogenous compounds of high pharmaceutical interest. Beni-Suef Univ J Basic Appl Sci 12(1):8. https://doi.org/10.1186/s43088-023-00346-z

    Article  PubMed  PubMed Central  Google Scholar 

  22. Guo X, Liu Y, Dong W, Hu Q, Li Y, Shuang S, Dong C, Cai L, Gong X (2021) Azithromycin detection in cells and tablets by N,S co-doped carbon quantum dots. Spectrochim Acta Part A Mol Biomol Spectrosc 252:119506. https://doi.org/10.1016/j.saa.2021.119506

    Article  CAS  Google Scholar 

  23. Barati A, Shamsipur M, Abdollahi H (2016) Metal-ion-mediated fluorescent carbon dots for indirect detection of sulfide ions. Sens Actuators B 230:289–297. https://doi.org/10.1016/j.snb.2016.02.075

    Article  CAS  Google Scholar 

  24. Wu H, Tong C (2019) Nitrogen- and Sulfur-Codoped Carbon dots for highly selective and sensitive fluorescent detection of Hg2 + ions and Sulfide in Environmental Water samples. J Agric Food Chem 67(10):2794–2800. https://doi.org/10.1021/acs.jafc.8b07176

    Article  CAS  PubMed  Google Scholar 

  25. Pogăcean F, Varodi C, Măgeruşan L, Stefan-van Staden R-I, Pruneanu S (2022) Highly sensitive Electrochemical detection of azithromycin with Graphene-Modified Electrode. Sensors 22(16):6181. https://doi.org/10.3390/s22166181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nigović B, Šimunić B (2003) Voltammetric assay of azithromycin in pharmaceutical dosage forms. J Pharm Biomed Anal 32(1):197–202. https://doi.org/10.1016/S0731-7085(03)00060-8

    Article  CAS  PubMed  Google Scholar 

  27. Farghaly OAE-M, Mohamed NAL (2004) Voltammetric determination of azithromycin at the carbon paste electrode. Talanta 62(3):531–538. https://doi.org/10.1016/j.talanta.2003.08.026

    Article  CAS  PubMed  Google Scholar 

  28. Kovaleva SV, Cheremukhina NM, Gladyshev VP (2004) Voltammetric determination of Sulfide ions. J Anal Chem 59(8):749–752. https://doi.org/10.1023/B:JANC.0000037280.30012.26

    Article  CAS  Google Scholar 

  29. Baciu A, Ardelean M, Pop A, Pode R, Manea F (2015) Simultaneous Voltammetric/Amperometric Determination of Sulfide and Nitrite in Water at BDD Electrode. 15(6):14526–14538. https://doi.org/10.3390/s150614526

  30. Alhazzani K, Alanazi AZ, Mostafa AM, Barker J, El-Wekil MM, Ali ABH (2023) A novel microextraction technique aided by air agitation using a natural hydrophobic deep eutectic solvent for the extraction of fluvastatin and empagliflozin from plasma samples: application to pharmacokinetic and drug-drug interaction study. RSC Adv 13(44):31201–31212. https://doi.org/10.1039/d3ra05929d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alhazzani K, Alanazi AZ, Mostafa AM, Barker J, El-Wekil MM, Bellah HAAM (2023) A selective dual quenching sensor (EY/BG@CDs) for simultaneous monitoring of gentamicin and ketorolac levels in plasma: a highly efficient platform that caters to the needs of therapeutic drug monitoring. RSC Adv 13(41):28940–28950. https://doi.org/10.1039/d3ra04894b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rageh AH, Abdel-aal FAM, Farrag SA, Ali A-MBH (2024) A surfactant-based quasi-hydrophobic deep eutectic solvent for dispersive liquid-liquid microextraction of gliflozins from environmental water samples using UHPLC/fluorescence detection. Talanta 266:124950. https://doi.org/10.1016/j.talanta.2023.124950

    Article  CAS  PubMed  Google Scholar 

  33. Alyami BA, Mahmoud AM, Alqarni AO, Ali A-MBH, El-Wekil MM (2023) Ratiometric fluorometric determination of sulfide using graphene quantum dots and self-assembled thiolate-capped gold nanoclusters triggered by aluminum. Microchim Acta 190(12):467. https://doi.org/10.1007/s00604-023-06042-0

    Article  CAS  Google Scholar 

  34. Alanazi AZ, Alhazzani K, Mahmoud AM, Ali A-MBH, El-Wekil MM (2024) Advanced fluorescence-based determination of carboplatin, a potent anticancer agent, with tripeptide-functionalized copper nanoclusters. Microchem J 199:110000. https://doi.org/10.1016/j.microc.2024.110000

    Article  CAS  Google Scholar 

  35. Alanazi AZ, Alhazzani K, Mostafa AM, Barker J, El-Wekil MM, Ali A-MBH (2024) Selective and reliable fluorometric quantitation of anti-cancer drug in real plasma samples using nitrogen-doped carbon dots after MMIPs solid phase microextraction: monitoring methotrexate plasma level. J Pharm Biomed Anal 238:115862. https://doi.org/10.1016/j.jpba.2023.115862

    Article  CAS  PubMed  Google Scholar 

  36. Alanazi AZ, Alhazzani K, Mostafa AM, Barker J, El-Wekil MM, Ali A-MBH (2024) Highly selective fluorometric detection of Streptokinase via fibrinolytic release of photoluminescent carbon dots integrated into fibrin clot network. Microchem J 197:109800. https://doi.org/10.1016/j.microc.2023.109800

    Article  CAS  Google Scholar 

  37. Alhazzani K, Alanazi AZ, Mostafa AM, Barker J, El-Wekil MM, Ali ABH (2024) Selective fluorescence turn-on detection of combination cisplatin-etoposide chemotherapy based on N-CDs/GSH-CuNCs nanoprobe. RSC Adv 14(4):2380–2390. https://doi.org/10.1039/d3ra07844b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alhazzani K, Alanazi AZ, Mostafa AM, Barker J, El-Wekil MM, Ali ABH (2024) Cobalt-modulated dual emission carbon dots for ratiometric fluorescent Vancomycin detection. RSC Adv 14(8):5609–5616. https://doi.org/10.1039/d3ra08899e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alhazzani K, Alanazi AZ, Mostafa AM, Barker J, El-Wekil MM, Ali A-MBH (2024) A dual emissive silver-riboflavin complex and nitrogen-doped carbon dot nanoprobe for ratiometric detection of glutathione. Microchem J 199:109996. https://doi.org/10.1016/j.microc.2024.109996

    Article  CAS  Google Scholar 

  40. Alqahtani YS, Mahmoud AM, El-Wekil MM, Ali A-MBH (2024) Selective fluoride detection based on modulation of red emissive carbon dots fluorescence by zirconium-alizarin complex: application to Nile River water and human saliva samples. Microchem J 198:110184. https://doi.org/10.1016/j.microc.2024.110184

    Article  CAS  Google Scholar 

  41. Gunjal DB, Nille OS, Naik VM, Shejwal RV, Kolekar GB, Gore AH (2023) Chap. 14 - Heteroatom/metal ion-doped carbon dots for sensing applications. In: Kailasa SK, Hussain CM (eds) Carbon dots in Analytical Chemistry. Elsevier, pp 181–197. doi:https://doi.org/10.1016/B978-0-323-98350-1.00002-5

  42. Atabaev TS (2018) Doped Carbon dots for sensing and bioimaging applications: a Minireview. Nanomaterials 8(5):342. https://doi.org/10.3390/nano8050342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu L, Zheng Q, Wang H, Liu C, Huang X, Xiao Y (2020) Double-color Lanthanide Metal–Organic Framework based Logic device and visual ratiometric fluorescence Water Microsensor for Solid Pharmaceuticals. Anal Chem 92(1):1402–1408. https://doi.org/10.1021/acs.analchem.9b04575

    Article  CAS  PubMed  Google Scholar 

  44. Al-Hashimi BR, Omer KM, Rahman HS, Othman HH (2021) Inner filter effect as a sensitive sensing platform for detection of nitrofurantoin using luminescent drug-based carbon nanodots. Spectrochim Acta Part A Mol Biomol Spectrosc 244:118835. https://doi.org/10.1016/j.saa.2020.118835

    Article  CAS  Google Scholar 

  45. Sh. Mohammed Ameen S, Sher Mohammed NM, Omer KM (2022) Visual monitoring of silver ions and cysteine using bi-ligand Eu-based metal organic framework as a reference signal: Color tonality. Microchem J 181:107721. https://doi.org/10.1016/j.microc.2022.107721

    Article  CAS  Google Scholar 

  46. Ameen SSM, Qader IB, Qader HA, Algethami FK, Abdulkhair BY, Omer KM (2023) Dual-state dual emission from precise chemically engineered bi-ligand MOF free from encapsulation and functionalization with self-calibration model for visual detection. Microchim Acta 191(1):62. https://doi.org/10.1007/s00604-023-06148-5

    Article  CAS  Google Scholar 

  47. Mohammed Ameen SS, Sher Mohammed NM, Omer KM (2023) Ultra-small highly fluorescent zinc-based metal organic framework nanodots for ratiometric visual sensing of tetracycline based on aggregation induced emission. Talanta 254:124178. https://doi.org/10.1016/j.talanta.2022.124178

    Article  CAS  PubMed  Google Scholar 

  48. Ozyurt D, Kobaisi MA, Hocking RK, Fox B (2023) Properties, synthesis, and applications of carbon dots: a review. Carbon Trends 12:100276. https://doi.org/10.1016/j.cartre.2023.100276

    Article  CAS  Google Scholar 

  49. Zhang Q, Wang R, Feng B, Zhong X, Ostrikov K (2021) Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nat Commun 12(1):6856. https://doi.org/10.1038/s41467-021-27071-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kong FYS, Horner P, Unemo M, Hocking JS (2019) Pharmacokinetic considerations regarding the treatment of bacterial sexually transmitted infections with azithromycin: a review. J Antimicrob Chemother 74(5):1157–1166. https://doi.org/10.1093/jac/dky548

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors express their gratitude to the Deanship of Scientific Research at Najran University for providing funding for this research through the Research Group Funding program (grant code NU/RG/MRC/12/4).

Author information

Authors and Affiliations

Authors

Contributions

Ashraf M. Mahmoud: Designing and execution of ideas for sample preparation, characterization, theoretical calculation as well as manuscript writing, Yahya S. Alqahtani: Sample preparation, discussion of the results, review of the manuscript, Mohamed M. El-Wekil: Experimental suggestion, Al-Montaser Bellah H. Ali: Ideas, experiments, supervision for the experiment, result and discussion, manuscript writing, reviewing and editing.

Corresponding author

Correspondence to Al-Montaser Bellah H. Ali.

Ethics declarations

Ethical Approval

The pharmacokinetic study was conducted in full compliance with ethical regulations, under a protocol approved by the Institutional Animal Care and Use Committee at Assiut University (02/2024/0095). The experiment adhered to the guiding principles in the Helsinki Declaration for humane treatment of animals.

Consent to Participate

Not applicable.

Consent for publication

Not Applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, A.M., Alqahtani, Y.S., El-Wekil, M.M. et al. Ratiometric Sensing of Azithromycin and Sulfide Using Dual Emissive Carbon Dots: A Turn On-Off-On Approach. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03737-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03737-2

Keywords

Navigation