Skip to main content
Log in

Synthesis of Novel [{(2-Amino-5-Nitro-N-[(E)-Thiophen-2-yl-Methylidene]Aniline-κ3N1:N4:S)(Sulphato-κ2O1:O3)}Zinc(II)] Complex with Physico-Chemical and Biological Perspective Exploration: A Combined Experimental and Computational Studies

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel metal complex was synthesized using freshly prepared 2-Amino-5-nitro-N-[(E)-thiophen-2-yl-methylidene]aniline ligand with Zn (II) sulphate heptahydrate in a 1:1 molar ratio. The ligand and the complex were characterized using different spectroscopic techniques, and the complex was assigned a distorted square pyramidal geometry. Additionally, DNA binding assays and antibacterial activity were used to assess the biological perspectives for the synthesized complex, including the ligand and complex which was further confirmed by molecular docking. Fluorescence Spectroscopy, viscosity measurement, and adsorption measurement were used to investigate the interaction of the Zn (II) complex with CT-DNA. A comparative in vitro antibacterial activity study against Escherichia coli, Klebsiella pneumoniaeBacillus subtilis, and Staphylococcus aureus strains were studied with free ligand and Zn (II) metal complex. The stable geometry of the complex was additionally established through computational simulation utilizing density functional theory, which was followed by the calculation of several electronic properties. The ADMET characteristics of the complex and ligand were also assessed using ADMET analysis. The in-silico ADMET properties pointed to a significant drug-likeness feature in the synthesized compounds, based on the Lipinski criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in the manuscript.

References

  1. Ashraf T, Ali B, Qayyum H, Haroone MS, Shabbir G (2023) Pharmacological aspects of schiff base metal complexes: A critical review. Inorg Chem Commun 150:110449

    Article  CAS  Google Scholar 

  2. Akbar Ali M, Huq Mirza A, Nazimuddin M, Rahman H, Butcher RJ (2002) The preparation and characterization of mono- and bis-chelated cadmium(II) complexes of the di-2-pyridylketone Schiff base of S-methyldithiocarbazate (Hdpksme) and the X-ray crystal structure of the |Cd(dpksme)2|· 0.5MeOH complex. Transit Met Chem 27:268–273

    Article  Google Scholar 

  3. Zangrando E, Islam MT, Islam MAAAA, Sheikh MC, Tarafder MTH, Miyatake R, Zahan R, Hossain MA (2015) Synthesis, characterization and bio-activity of nickel(II) and copper(II) complexes of a bidentate NS Schiff base of S-benzyl dithiocarbazate. Inorganica Chim Acta 427:278–284

    Article  CAS  Google Scholar 

  4. Pereira GA, Massabni AC, Castellano EE, Costa LAS, Leite CQF, Pavan FR, Cuin A (2012) A broad study of two new promising antimycobacterial drugs: Ag(I) and Au(I) complexes with 2-(2-thienyl)benzothiazole. Polyhedron 38:291–296

    Article  CAS  Google Scholar 

  5. Ylldlz M, Tan E, Demir N, Ylldlrlm N, Ünver H, Kiraz A, Mestav B (2015) Synthesis and spectral, antimicrobial, anion sensing, and DNA binding properties of Schiff base podands and their metal complexes. Russ J Gen Chem 85:2149–2162

    Article  Google Scholar 

  6. Latif MA, Ahmed T, Hossain MS, Chaki BM, Abdou A, Kudrat-E-Zahan M (2023) Synthesis, Spectroscopic Characterization, DFT Calculations, Antibacterial Activity, and Molecular Docking Analysis of Ni(II), Zn(II), Sb(III), and U(VI) Metal Complexes Derived from a Nitrogen-Sulfur Schiff Base. Russ J Gen Chem 93:389–397

    Article  CAS  Google Scholar 

  7. Aazam ES, Zaki M (2020) Synthesis and Characterization of Ni(II)/Zn(II) Metal Complexes Derived from Schiff Base and Ortho-Phenylenediamine: In vitro DNA Binding, Molecular Modeling and RBC Hemolysis. ChemistrySelect 5:610–618

    Article  CAS  Google Scholar 

  8. Kudrat-E-Zahan M, Islam MS (2015) Synthesis, characterization, and antimicrobial activity of complexes of Cu(II), Ni(II), Zn(II), Pb(II), Co(II), Mn(II), and U(VI) containing bidentate Schiff base of [S-methyl-3-(4-methoxybenzylidine)dithiocarbazate]. Russ J Gen Chem 85:979–983

    Article  CAS  Google Scholar 

  9. Hossain MS, Khushy KA, Latif MA, Hossen MF, Asraf MA, Kudrat-E-Zahan M, Abdou A (2022) Co(II), Ni(II), and Cu(II) Complexes Containing Isatin-Based Schiff Base Ligand: Synthesis, Physicochemical Characterization, DFT Calculations, Antibacterial Activity, and Molecular Docking Analysis. Russ J Gen Chem 92:2723–2733

    Article  CAS  Google Scholar 

  10. Rosenberg B, Vancamp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Rodríguez MR, Lavecchia MJ, Parajón-Costa BS, González-Baró AC, González-Baró MR, Cattáneo ER (2021) DNA cleavage mechanism by metal complexes of Cu(II), Zn(II) and VO(IV) with a schiff-base ligand. Biochimie 186:43–50

    Article  PubMed  Google Scholar 

  12. Omer MAS, Liu JC, Deng WT, Jin NZ (2014) Syntheses, crystal structures and antioxidant properties of four complexes derived from a new Schiff base ligand (N1E, N2E)-N 1, N2-bis(1-(pyrazin-2-yl)ethylidene)ethane-1,2 diamine. Polyhedron 69:10–14

    Article  CAS  Google Scholar 

  13. Ozturk H, Niazi P, Mansoor M, Monib AW, Alikhail M, Azizi A (2023) The Function of Zinc in Animal, Plant, and Human Nutrition. J Res Appl Sci Biotechnol 2:35–43

    Article  Google Scholar 

  14. Boyle KM, Barton JK (2016) Targeting DNA mismatches with rhodium metalloinsertors. Inorganica Chim Acta 452:3–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Thompson KH, Orvig C (2003) Boon and bane of metal ions in medicine. Science 300:936–939

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Kaushik S, Paliwal SK, Iyer MR, Patil VM (2023) Promising Schiff bases in antiviral drug design and discovery. Med Chem Res 1–14

  17. Kumar B, Devi J, Manuja A (2023) Synthesis, structure elucidation, antioxidant, antimicrobial, anti-inflammatory and molecular docking studies of transition metal(II) complexes derived from heterocyclic Schiff base ligands. Res Chem Intermed 49:2455–2493

    Article  CAS  Google Scholar 

  18. Sieffert N, Wipff G (2015) Uranyl extraction by N, N-dialkylamide ligands studied using static and dynamic DFT simulations. Dalt Trans 44:2623–2638

    Article  CAS  Google Scholar 

  19. Riaz S, Jaffar K, Perveen M, Riaz A, Nazir S, Iqbal J (2021) Computational study of therapeutic potential of phosphorene as a nano-carrier for drug delivery of nebivolol for the prohibition of cardiovascular diseases: a DFT study. J Mol Model 27:1–15. https://doi.org/10.1007/s00894-021-04907-w

    Article  CAS  Google Scholar 

  20. Becke AD (1992) Densityâ-functional thermochemistry. I. The effect of the exchangeâ-only gradient correction. J Chem Phys 96:2155–2160

    Article  ADS  CAS  Google Scholar 

  21. Ghosh K, Mridha NK, Khan AA, Baildya N, Dutta T, Biswas K, Ghosh NN (2022) CO2 activation on transition metal decorated graphene quantum dots: An insight from first principles. Phys E Low-dimensional Syst Nanostruct 135:114993

    Article  CAS  Google Scholar 

  22. Baildya N, Mazumdar S, Mridha NK, Chattopadhyay AP, Khan AA, Dutta T, Mandal M, Chowdhury SK, Reza R, Ghosh NN (2023) Comparative study of the efficiency of silicon carbide, boron nitride and carbon nanotube to deliver cancerous drug, azacitidine: A DFT study. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2023.106593

    Article  PubMed  Google Scholar 

  23. Dutta T, Chowdhury SK, Ghosh NN, Chattopadhyay AP, Das M, Mandal V (2022) Green synthesis of antimicrobial silver nanoparticles using fruit extract of Glycosmis pentaphylla and its theoretical explanations. J Mol Struct. 1247:131361. https://doi.org/10.1016/j.molstruc.2021.131361

    Article  CAS  Google Scholar 

  24. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011) NCIPLOT: A program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632

    Article  PubMed Central  PubMed  Google Scholar 

  25. Boto RA, Peccati F, Laplaza R, Quan C, Carbone A, Piquemal JP, Maday Y, Contreras-Garcĺa J (2020) NCIPLOT4: Fast, Robust, and Quantitative Analysis of Noncovalent Interactions. J Chem Theory Comput 16:4150–4158

    Article  CAS  PubMed  Google Scholar 

  26. Kallur M, Chandraprabha MN, Rajan HK, Khosla A, Manjunatha CJET (2022) Synthesis, Characterization of Cerium Oxide Nanoparticles and Evaluation of DNA Binding Interactions. ECS Trans 107:15935–15943

    Article  ADS  Google Scholar 

  27. Wolfe A, Shimer GH, Meehan T (1987) Polycyclic Aromatic Hydrocarbons Physically Intercalate into Duplex Regions of Denatured DNA. Biochemistry 26:6392–6396

    Article  CAS  PubMed  Google Scholar 

  28. Singha UK, Pradhan S, Mishra DK, Gurung P, Chettri A, Sinha B (2023) Synthesis, physicochemical characterisation and DNA binding study of a novel azo Schiff base Ni(II) complex. Eur J Chem 14:280–286

    Article  CAS  Google Scholar 

  29. Sabolová D, Sovová S, Janovec L, Timko E, Jager D, Tóthová J (2023) Synthesis, characterization and DNA binding properties of 3,6-bis[(alkylamino)ureido]acridines. Chem Pap 77:3155–3162

    Google Scholar 

  30. Mishra DK, Singha K, Das A, Dutta S, Kar P, Chakraborty A, Sen A, Sinha B, Kumar Mishra D, Kumar Singha U (2018) Journal of Coordination Chemistry DNA Binding, amelioration of oxidative stress, and molecular docking study of Zn(II) metal complex of a new Schiff base ligand DNA Binding, amelioration of oxidative stress, and molecular docking study of Zn(II) metal complex of a new Schiff base ligand. J Coord Chem 71:2165–2182

    Article  CAS  Google Scholar 

  31. Sunita M, Anupama B, Ushaiah B, Gyana Kumari C (2017) Synthesis, characterization, DNA binding and cleavage studies of mixed-ligand copper (II) complexes. Arab J Chem 10:S3367–S3374

    Article  CAS  Google Scholar 

  32. Chaires JB, Dattagupta N, Crothers DM (1982) Studies on Interaction of Anthracycline Antibiotics and Deoxyribonucleic Acid: Equilibrium Binding Studies on Interaction of Daunomycin with Deoxyribonucleic Acid. Biochemistry 21:3933–3940

    Article  CAS  PubMed  Google Scholar 

  33. Shahabadi N, Razlansari M (2022) Insight into the binding mechanism of macrolide antibiotic; erythromycin to calf thymus DNA by multispectroscopic and computational approaches. J Biomol Struct Dyn 40:6171–6182

    Article  CAS  PubMed  Google Scholar 

  34. Richter S, Singh S, Draca D, Kate A, Kumbhar A, Kumbhar AS, Maksimovic-Ivanic D, Mijatovic S, Lönnecke P, Hey-Hawkins E (2016) Antiproliferative activity of ruthenium(II) arene complexes with mono- and bidentate pyridine-based ligands. Dalt Trans 45:13114–13125

    Article  CAS  Google Scholar 

  35. Sumrra SH, Atif AH, Zafar MN, Khalid M, Tahir MN, Nazar MF, Nadeem MA, Braga AAC (2018) Synthesis, crystal structure, spectral and DFT studies of potent isatin derived metal complexes. J Mol Struct 1166:110–120

    Article  ADS  CAS  Google Scholar 

  36. Hassan AU, Sumrra SH, Zafar MN, Nazar MF, Mughal EU, Zafar MN, Iqbal M (2022) New organosulfur metallic compounds as potent drugs: synthesis, molecular modeling, spectral, antimicrobial, drug likeness and DFT analysis. Mol Divers 26:51–72

    Article  CAS  PubMed  Google Scholar 

  37. Hassan AU, Sumrra SH, Imran M, Chohan ZH (2022) New 3d multifunctional metal chelates of sulfonamide: Spectral, vibrational, molecular modeling, DFT, medicinal and in silico studies. J Mol Struct. https://doi.org/10.1016/j.molstruc.2021.132305

    Article  Google Scholar 

  38. Trott O, Olson AJ (2010) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Abdallah SM, Mohamed GG, Zayed MA, El-Ela MSA (2009) Spectroscopic study of molecular structures of novel Schiff base derived from o-phthaldehyde and 2-aminophenol and its coordination compounds together with their biological activity. Spectrochim Acta Part A Mol Biomol Spectrosc 73:833–840

    Article  ADS  Google Scholar 

  40. Geiger DK, Cristina Geiger H, Donohoe JS (2012) 2-Amino-5-nitro-N-[(E)-thiophen-2-yl-methylidene]aniline. Acta Crystallogr Sect E Struct Rep Online 68(10):o2867–o2867. https://doi.org/10.1107/S1600536812037464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Khalil EAM, Mohamed GG (2022) Preparation, spectroscopic characterization and antitumor-antimicrobial studies of some Schiff base transition and inner transition mixed ligand complexes. J Mol Struct. 1249:131612. https://doi.org/10.1016/j.molstruc.2021.131612

    Article  CAS  Google Scholar 

  42. Sayed FN, Mohamed GG, Deghadi RG (2023) Structural characterization and molecular docking studies of biologically active platinum(II) and palladium(II) complexes of ferrocenyl Schiff bases. J Mol Struct. https://doi.org/10.1016/j.molstruc.2023.134904

    Article  Google Scholar 

  43. Sellmann D (1971) K. Nakamoto: Infrared Spectra of Inorganic and Coordination Compounds . Second Edition, John Wiley & Sons. New York, London, Sydney, Toronto, 1970. 338 Seiten, zahlreiche Abbildungen und Tabellen. Preis: 140s . Berichte der Bunsengesellschaft für Phys Chemie 75:603–604

  44. Neelakantan MA, Rusalraj F, Dharmaraja J, Johnsonraja S, Jeyakumar T, Sankaranarayana Pillai M (2008) Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes. Spectrochim Acta Part A Mol Biomol Spectrosc 71:1599–1609

    Article  ADS  CAS  Google Scholar 

  45. Abd El-Lateef HM, Mohamad ADM, Shehata MR, Abu-Dief AM (2022) Targeted synthesis of two iron(III) tetradentate dibasic chelating Schiff base complexes toward inhibition of acidic induced steel corrosion: Empirical and DFT insights. Appl Organomet Chem. 36(7):e6718. https://doi.org/10.1002/aoc.6718

    Article  CAS  Google Scholar 

  46. Paul MK, Singh YD, Singh NB, Sarkar U (2015) Emissive bis-salicylaldiminato Schiff base ligands and their zinc(II) complexes: Synthesis, photophysical properties, mesomorphism and DFT studies. J Mol Struct 1081:316–328

    Article  ADS  CAS  Google Scholar 

  47. Singh A, Maiti SK, Gogoi HP, Barman P (2023) Purine-based Schiff base Co(II), Cu(II), and Zn(II) complexes: Synthesis, characterization, DFT calculations, DNA binding study, and molecular docking. Polyhedron 230:116244. https://doi.org/10.1016/j.poly.2022.116244

    Article  CAS  Google Scholar 

  48. Wu JZ, Yuan L, Wu JF (2005) Synthesis and DNA binding of μ-[2,9-bis(2-imidazo[4,5-f][1,10]phenanthroline)-1,10-phenanthroline]bis[1,10-phenanthrolinecopper(II)]. J Inorg Biochem 99:2211–2216

    Article  CAS  PubMed  Google Scholar 

  49. Chen LM, Liu J, Chen JC, Tan CP, Shi S, Zheng KC, Ji LN (2008) Synthesis, characterization, DNA-binding and spectral properties of complexes [Ru(L)4(dppz)]2+ (L = Im and MeIm). J Inorg Biochem 102:330–341

    Article  CAS  PubMed  Google Scholar 

  50. Indumathy R, Weyhermüller T, Nair BU (2010) Biimidazole containing cobalt(iii) mixed ligand complexes: Crystal structure and photonuclease activity. Dalt Trans 39:2087–2097

    Article  CAS  Google Scholar 

  51. Abdel-Rahman LH, El-Khatib RM, Nassr LAE, Abu-Dief AM (2013) Synthesis, physicochemical studies, embryos toxicity and DNA interaction of some new Iron(II) Schiff base amino acid complexes. J Mol Struct 1040:9–18

    Article  ADS  CAS  Google Scholar 

  52. Tarui M, Doi M, Ishida T, Inoue M, Nakaike S, Kitamura K (1994) DNA-binding characterization of a novel anti-tumour benzo[a]phenazine derivative NC-182: Spectroscopic and viscometric studies. Biochem J 304:271–279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Ramdas K, Reddy CVR, Sireesha B (2022) Synthesis, Characterization, DNA Binding, Cleavage, Antibacterial, In vitro Anticancer and Molecular Docking Studies of Ni(II), Cu(II) and Zn(II) Complexes of 3,4,5-Trimethoxy-N-(3-Hydroxy-5-(Hydroxymethyl)-2-Methylpyridin-4-yl)methylene)Benzohydrazide. Arab J Sci Eng 47:407–418

    Article  CAS  Google Scholar 

  54. Satyanarayana S, Dabrowiak JC, Chaires JB (1993) Tris(phenanthroline)ruthenium(II) Enantiomer Interactions with DNA: Mode and Specificity of Binding. Biochemistry 32:2573–2584

    Article  CAS  PubMed  Google Scholar 

  55. Nie Y, Dai Z, Fozia ZG, Jiang J, Xu X, Ying M, Wang Y, Hu Z, Xu H (2022) Comparative Studies on DNA-Binding Mechanisms between Enantiomers of a Polypyridyl Ruthenium(II) Complex. J Phys Chem B 126:4787–4798

    Article  CAS  PubMed  Google Scholar 

  56. Johnston DH, Glasgow KC, Thorp HH (1995) Electrochemical Measurement of the Solvent Accessibility of Nucleobases Using Electron Transfer between DNA and Metal Complexes. J Am Chem Soc 117:8933–8938

    Article  CAS  Google Scholar 

  57. Hidalgo M, Rodriguez G, Kuhn JG, Brown T, Weiss G, MacGovren JP, Von Hoff DD, Rowinsky EK (1998) A phase I and pharmacological study of the glutamine antagonist acivicin with the amino acid solution aminosyn in patients with advanced solid malignancies. Clin Cancer Res 4:2763–2770

    CAS  PubMed  Google Scholar 

  58. Barton JK, Raphael AL (1984) Photoactivated Stereospecific Cleavage of Double-Helical DNA by Cobalt(III) Complexes. J Am Chem Soc 106:2466–2468

    Article  CAS  Google Scholar 

  59. Hassan AU, Sumrra SH (2022) Exploring the Bioactive Sites of New Sulfonamide Metal Chelates for Multi-Drug Resistance: An Experimental Versus Theoretical Design. J Inorg Organomet Polym Mater 32:513–535

    Article  CAS  Google Scholar 

  60. Behrami A (2014) Antibacterial activity of coumarine derivatives synthesized from 4-Chloro-chromen-2-one. The comparison with standard drug. Orient J Chem 30:1747–1752

    Article  CAS  Google Scholar 

  61. Amoa Onguéné P, Ntie-Kang F, Lifongo LL, Ndom JC, Sippl W, Mbaze LMA (2013) The potential of anti-malarial compounds derived from African medicinal plants, part I: A pharmacological evaluation of alkaloids and terpenoids. Malar J 12:1–26. https://doi.org/10.1186/1475-2875-12-449

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Departmental Special Assistance Scheme under the University Grants Commission, New Delhi (SAP-DRS-III, No. 540/12/DRS/2013) & University of North Bengal, Govt. of West Bengal for financial and instrumental support.

Funding

This declaration is “not applicable”.

Author information

Authors and Affiliations

Authors

Contributions

Sudarshan Pradhan: Design and Synthesis, Analytical and Spectroscopic Data Analysis, Writing – original draft. Pritika Gurung: Analytical and Spectroscopic Data Analysis. Anmol Chettri: Analytical and Spectroscopic Data Analysis. Uttam Kumar Singha: Pharmacokinetic properties. Prajal Chhetri: Design and Synthesis. Tanmoy Dutta: DFT Study. Biswajit Sinha: Design and Synthesis, Analytical and Spectroscopic Data Analysis, Writing – final draft, Editing and Communication.

Corresponding author

Correspondence to Biswajit Sinha.

Ethics declarations

Ethics Approval

This is an observational study. The University of North Bengal Ethics Committee has confirmed that no ethical approval is required.

Consent to Participate

This declaration is “not applicable”.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25005 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, S., Gurung, P., Chettri, A. et al. Synthesis of Novel [{(2-Amino-5-Nitro-N-[(E)-Thiophen-2-yl-Methylidene]Aniline-κ3N1:N4:S)(Sulphato-κ2O1:O3)}Zinc(II)] Complex with Physico-Chemical and Biological Perspective Exploration: A Combined Experimental and Computational Studies. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03612-0

Keywords

Navigation