Skip to main content
Log in

On-Off-On Fluorometric Detection of Hg(II) and L-Cysteine Using Red Emissive Nitrogen-Doped Carbon Dots for Environmental and Clinical Sample Analysis

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This research introduces a novel fluorescence sensor ‘on-off-on’ employing nitrogen-doped carbon dots (N-CDs) with an ‘on-off-on’ mechanism for the selective and sensitive detection of Hg(II) and L-cysteine (L-Cys). N-CDs was synthesized using citric acid as the carbon precursor and urea as the nitrogen source in dimethylformamide (DMF) solvent, resulting in red emissive characteristics under UV light. Comprehensive spectroscopic analyses, including UV-Vis, fluorescence, FT-IR, XRD, XPS, Raman, and Zeta potential techniques, validated the structural and optical characteristics of the synthesized N-CDs. The maximum excitation and emission of N-CDs were observed at 548 and 622 nm, respectively. The quantum yield of N-CDs was calculated to be 16.1%. The fluorescence of N-CDs effectively quenches upon the addition of Hg(II) due to the strong coordination between Hg(II) and the surface functionalities of N-CDs. Conversely, upon the subsequent addition of L-Cys, the fluorescence of N-CDs was restored. This restoration can be attributed to the stronger affinity of the -SH group in L-Cys towards Hg(II) relative to the surface functionalities of N-CDs. This dual-mode response enabled the detection of Hg(II) and L-Cys with impressive detection limits of 15.1 nM and 8.0 nM, respectively. This sensor methodology effectively detects Hg(II) in lake water samples and L-Cys levels in human urine, with a recovery range between 99 and 101%. Furthermore, the N-CDs demonstrated excellent stability, high sensitivity, and selectivity, making them a promising fluorescence on-off-on probe for both environmental monitoring of Hg(II) and clinical diagnostics of L-Cys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Malik LA, Bashir A, Quraeshi A et al (2019) Detection and removal of heavy metal ions: a review. Environ Chem Lett 17:1495–1521. https://doi.org/10.1007/s10311-019-00891-z

    Article  CAS  Google Scholar 

  2. Dong B, Liu X, Dai L et al (2013) Changes of heavy metal speciation during high-solid anaerobic digestion of sewage sludge. Bioresour Technol 131:152–158. https://doi.org/10.1016/j.biortech.2012.12.112

    Article  CAS  PubMed  Google Scholar 

  3. Dubey S, Shri M, Gupta A, Rani V, Chakrabarty D (2018) Toxicity and detoxification of heavy metals during plant growth and metabolism. Environ Chem Lett 16:1169–1192. https://doi.org/10.1007/s10311-018-0741-8

    Article  CAS  Google Scholar 

  4. Rehman K, Fatima F, Waheed I et al (2018) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119(1):157–184. https://doi.org/10.1002/jcb.26234

    Article  CAS  PubMed  Google Scholar 

  5. Rice KM, Walker EM, Wu M et al (2014) Environmental mercury and its toxic effects. J Prev Med Public Health 47(2):74–83. https://doi.org/10.3961/jpmph.2014.47.2.74

    Article  PubMed  PubMed Central  Google Scholar 

  6. Miserendino AR, Guimarães JRD, Schudel G et al (2018) Mercury pollution in Amapá, Brazil: Mercury amalgamation in artisanal and small-scale gold mining or land-cover and land-use changes? ACS Earth Space Chem 2(5):441–450. https://doi.org/10.1021/acsearthspacechem.7b00089

    Article  CAS  Google Scholar 

  7. Hilson G (2006) Abatement of mercury pollution in the small-scale gold mining industry: Restructuring the policy and research agendas. Sci Total Environ 362(1–3):1–14. https://doi.org/10.1016/j.scitotenv.2005.09.065

    Article  CAS  PubMed  Google Scholar 

  8. World Health Organization (2008) Guidelines for drinking-water quality, 3rd edn., Geneva

  9. Milic SZ, Potkonjak NI, Gorjanovic SZ et al (2011) A polarographic study of chlorogenic acid and its interaction with some heavy metal ions. Electroanalysis 23:2935–2940. https://doi.org/10.1002/elan.201100476

    Article  CAS  Google Scholar 

  10. Xue X, Wang F, Liu X (2008) One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J Am Chem Soc 130(11):3244–3245. https://doi.org/10.1021/ja076716c

    Article  CAS  PubMed  Google Scholar 

  11. Ciedziel JV, Gerstenberger S (2004) Determination of total mercury in human hair and animal fur by combustion atomic absorption spectrometry. Talanta 64:918–921. https://doi.org/10.1016/j.talanta.2004.04.013

    Article  CAS  Google Scholar 

  12. Anandhakumar S, Mathiyarasu J, Phani KLN (2012) Anodic stripping voltammetric detection of mercury (II) using Au-PEDOT modified carbon paste electrode. Anal Methods 4:2486–2489. https://doi.org/10.1039/c2ay25170a

    Article  CAS  Google Scholar 

  13. Wang GL, Zhu XY, Jiao HJ et al (2011) Ultrasensitive and dual functional colorimetric sensors for mercury (II) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles. Biosens Bioelectron 3:337–342. https://doi.org/10.1016/j.bios.2011.10.041

    Article  CAS  Google Scholar 

  14. Page LE, Zhang X, Jawaid AM et al (2011) Detection of toxic mercury ions using a ratiometric CdSe/ZnS nanocrystal sensor. Chem Commun 47:7773–7775. https://doi.org/10.1039/c1cc11442e

    Article  CAS  Google Scholar 

  15. Ball RO, Courtney MG, Pencharz PB (2006) The in vivo sparing of methionine by cysteine in sulfur amino acid requirements in animal models and adult humans. J Nutr 136:1682S–1693S. https://doi.org/10.1093/jn/136.6.1682S

    Article  CAS  PubMed  Google Scholar 

  16. Weerapana E, Wang C, Simon GM et al (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468:790–797. https://doi.org/10.1038/nature09472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bulaj G, Kortemme T, Goldenberg DP (1998) Ionization-reactivity relationships for cysteine thiols in polypeptides. Biochemistry 37:8965–8972. https://doi.org/10.1021/bi973101r

    Article  CAS  PubMed  Google Scholar 

  18. Bonifácio VDB, Pereira SA, Serpa J, Vicente JB (2021) Cysteine metabolic circuitries: druggable targets in cancer. Br J Cancer 124:862–879. https://doi.org/10.1038/s41416-020-01156-1

    Article  CAS  PubMed  Google Scholar 

  19. Quijano C, Trujillo M, Castro L, Trostchansky A (2016) Interplay between oxidant species and energy metabolism. Redox Biol 8:28–42. https://doi.org/10.1016/j.redox.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  20. Baba SP, Bhatnagar A (2018) Role of thiols in oxidative stress. Curr Opin Toxicol 7:133–139. https://doi.org/10.1016/j.cotox.2018.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nidya M, Umadevi M, Rajkumar BJM (2014) Structural, morphological and optical studies of L-cysteine modified silver nanoparticles and its application as a probe for the selective colorimetric detection of Hg2+. Spectrochim Acta - Part A Mol Biomol Spectrosc 133:265–271. https://doi.org/10.1016/j.saa.2014.04.193

    Article  CAS  Google Scholar 

  22. Go YM, Jones DP (2011) Cysteine/cystine redox signaling in cardiovascular disease. Free Radic Biol Med 50:495–509. https://doi.org/10.1016/j.freeradbiomed.2010.11.029

    Article  CAS  PubMed  Google Scholar 

  23. Lai X, Wang M, Zhu Y et al (2021) ZnO NPs delay the recovery of psoriasis-like skin lesions through promoting nuclear translocation of p-NFκB p65 and cysteine deficiency in keratinocytes. J Hazard Mater 410:124566. https://doi.org/10.1016/j.jhazmat.2020.124566

    Article  CAS  PubMed  Google Scholar 

  24. Puka-Sundvall M, Eriksson P, Nilsson M et al (1995) Neurotoxicity of cysteine: interaction with glutamate. Brain Res 705(95):65–70. https://doi.org/10.1016/0006-8993

    Article  CAS  PubMed  Google Scholar 

  25. Kuśmierek K, Głowacki R, Bald E (2006) Analysis of urine for cysteine, cysteinylglycine, and homocysteine by high-performance liquid chromatography. Anal Bioanal Chem 385:855–860. https://doi.org/10.1007/s00216-006-0454-x

    Article  CAS  PubMed  Google Scholar 

  26. Bald E, Glowacki R, Drzewoski J (2001) Determination by liquid chromatography of free and total cysteine in human urine in the form of its S-quinolinium derivative. J Chromatogr A 913:319–329. https://doi.org/10.1016/S0021-9673(00)01202-4

    Article  CAS  PubMed  Google Scholar 

  27. Ivanov AV, Virus ED, Luzyanin BP et al (2015) Capillary electrophoresis coupled with 1,1’-thiocarbonyldiimidazole derivatizations for the rapid detection of total homocysteine and cysteine in human plasma. J Chromatogr B Anal Technol Biomed Life Sci 1004:30–36. https://doi.org/10.1016/j.jchromb.2015.09.036

    Article  CAS  Google Scholar 

  28. Liu T, Li N, Dong JX et al (2016) Fluorescence detection of mercury ions and cysteine based on magnesium and nitrogen co-doped carbon quantum dots and IMPLICATION logic gate operation. Sens Actuators B Chem 231:147–153. https://doi.org/10.1016/j.snb.2016.02

    Article  CAS  Google Scholar 

  29. Tajik S, Dourandish Z, Jahani PM et al (2021) Recent developments in voltammetric and amperometric sensors for cysteine detection. RSC Adv 11:5411–5425. https://doi.org/10.1039/d0ra07614g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dadfarnia S, Assadollahi T, Shabani AMH (2007) Speciation and determination of thallium by on-line microcolumn separation/preconcentration by flow injection-flame atomic absorption spectrometry using immobilized oxine as sorbent. J Hazard Mater 148:446–452. https://doi.org/10.1016/j.jhazmat.2007.02.059

    Article  CAS  PubMed  Google Scholar 

  31. Dourado AHB, Queiroz R, Temperini MLA, Sumodjo PTA (2016) Investigation of the electrochemical behavior of l-cysteine in acidic media. J Electroanal Chem 765:87–91. https://doi.org/10.1016/j.jelechem.2015.09.004

    Article  CAS  Google Scholar 

  32. Wang FT, Wang LN, Xu J et al (2021) Synthesis and modification of carbon dots for advanced biosensing application. Analyst 146:4418–4435. https://doi.org/10.1039/d1an00466b

    Article  CAS  PubMed  Google Scholar 

  33. Arcudi F, Ðorđević L, Rebeccani S et al (2021) Lighting up the electrochemiluminescence of carbon dots through pre- and post-synthetic design. Adv Sci 8:1–9. https://doi.org/10.1002/advs.202100125

    Article  CAS  Google Scholar 

  34. Zhu S, Meng Q, Wang L et al (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chemie - Int Ed 52:3953–3957. https://doi.org/10.1002/anie.201300519

    Article  CAS  Google Scholar 

  35. Atchudan R, Edison TNJI, Lee YR (2016) Nitrogen-doped carbon dots originating from unripe peach for fluorescent bioimaging and electrocatalytic oxygen reduction reaction. J Colloid Interface Sci 482:8–18. https://doi.org/10.1016/j. jcis.2016.07.058

    Article  CAS  PubMed  Google Scholar 

  36. Barhum H, Alon T, Attrash M et al (2021) Multicolor phenylenediamine carbon dots for metal-ion detection with picomolar sensitivity. ACS Appl Nano Mater 4(9):9919–9931. https://doi.org/10.1021/acsanm.1c02496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou Y, Zhang JF, Yoon J (2014) Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chem Rev 114:5511–5571. https://doi.org/10.1021/cr4003

    Article  CAS  PubMed  Google Scholar 

  38. Bruno F, Sciortino A, Buscarino G et al (2021) A comparative study of top-down and bottom-up carbon nanodots and their interaction with mercury ions. Nanomaterials 11:1265. https://doi.org/10.3390/nano11051265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gao D, Zhang Y, Liu A et al (2020) Photoluminescence-tunable carbon dots from synergy effect of sulfur doping and water engineering. Chem Eng J 388:124199. https://doi.org/10.1016/j.cej.2020.124199

    Article  CAS  Google Scholar 

  40. Li M, Hu C, Yu C et al (2015) Organic amine-grafted carbon quantum dots with tailored surface and enhanced photoluminescence properties. Carbon 91:291–297. https://doi.org/10.1016/j.carbon.2015.04.083

    Article  CAS  Google Scholar 

  41. Li F, Yang D, Xu H (2019) Non-metal-heteroatom-doped carbon dots: synthesis and properties. Chem - A Eur J 25:1165–1176. https://doi.org/10.1002/chem.201802793

    Article  CAS  Google Scholar 

  42. Liu Z, Gong Y, Fan Z (2016) Cysteine detection using a high-fluorescence sensor based on a nitrogen-doped graphene quantum dot-mercury(II) system. J Lumin 175:129–134. https://doi.org/10.1016/j.jlumin.2016.01.036

    Article  CAS  Google Scholar 

  43. Qu S, Zhou D, Li D et al (2016) Toward efficient orange emissive carbon nanodots through conjugated sp2-Domain controlling and surface charges engineering. Adv Mater 28:3516–3521. https://doi.org/10.1002/adma.201504891

    Article  CAS  PubMed  Google Scholar 

  44. Langer M, Paloncýová M, Medve M et al (2021) Progress and challenges in understanding of photoluminescence properties of carbon dots based on theoretical computations. Appl Mater Today 22:100924. https://doi.org/10.1016/j.apmt.2020.100924

    Article  Google Scholar 

  45. Jin SH, Kim DH, Jun GH et al (2013) Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7:1239–1245. https://doi.org/10.1021/nn304675g

    Article  CAS  PubMed  Google Scholar 

  46. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Boston

    Book  Google Scholar 

  47. PavIa DL, Lampman GM, Kriz GS, Vyvyan JR (2008) Introduction to Spectroscopy, 4th edn. Cengage Learning, Boston

    Google Scholar 

  48. Ding H, Yu SB, Wei JS, Xiong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491. https://doi.org/10.1021/acsnano.5b05406

    Article  CAS  PubMed  Google Scholar 

  49. Singaravelu CM, Deschanels X, Rey C, Causse J (2021) Solid-state fluorescent carbon dots for fluorimetric sensing of Hg2+. ACS Appl Nano Mater 4:6386–6397. https://doi.org/10.1021/acsanm.1c01400

    Article  CAS  Google Scholar 

  50. Jiang L, Ding H, Lu S et al (2020) Photoactivated fluorescence enhancement in F,N-doped carbon dots with piezochromic behavior. Angew Chemie - Int Ed 59:9986–9991. https://doi.org/10.1002/anie.201913800

    Article  CAS  Google Scholar 

  51. Dong F, Sun Y, Wu L et al (2012) Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance. Catal Sci Technol 2:1332–1335. https://doi.org/10.1039/c2cy20049j

    Article  CAS  Google Scholar 

  52. Mehta VN, Jha S, Singhal RK et al (2014) Preparation of multicolor emitting carbon dots for HeLa cell imaging. New J Chem 38:6152–6160. https://doi.org/10.1039/C4NJ

    Article  CAS  Google Scholar 

  53. Hao Y, Li R, Liu Y et al (2023) The on–off-on fluorescence sensor of hollow carbon dots for detecting Hg2+ and ascorbic acid. J Fluoresc 33:459–469. https://doi.org/10.1007/s10895-022-03057-3

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work reported in the paper has not received any funding.

Author information

Authors and Affiliations

Authors

Contributions

D.J.N.: Investigation, Formal analysis, Writing N.V.: Investigation, S.A.J.: Conceptualization, Supervision, M.G.S.: Supervision and Review.

Corresponding authors

Correspondence to S Abraham John or M G Sethuraman.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All the authors consent to publishing the paper.

Conflict of Interest

The authors have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, D.J., Vasimalai, N., John, S.A. et al. On-Off-On Fluorometric Detection of Hg(II) and L-Cysteine Using Red Emissive Nitrogen-Doped Carbon Dots for Environmental and Clinical Sample Analysis. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03598-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03598-9

Keywords

Navigation