Skip to main content
Log in

Turn-Off Fluorometric Determination of Bilirubin Using Facile Synthesized Nitrogen-Doped Carbon Dots as a Fluorescent Probe

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Bilirubin plays a significant role in human health management, particularly in the case of jaundice. Because of the need for the monitoring of bilirubin levels in jaundice patients, the development of a robust sensitive method becomes essential. Here, we describe the development of a highly sensitive and selective turn-off fluorometric detection method for bilirubin in blood serum samples using nitrogen-doped carbon dots (N-CDs). N-CDs was synthesized by the pyrolysis process, using citric acid and L-asparagine as the carbon and nitrogen sources, respectively. The prepared N-CDs solution showed highly intense blue emission with good stability. The HR-TEM image of N-CDs revealed spherical dot-like structures with an average size calculated to be 7.16 nm. Further, the surface functional groups of N-CDs were analyzed by FT-IR, Raman, XRD, and XPS techniques. Fluorescence spectra showed the maximum emission intensity at 443 nm (λex). The linear range of addition was performed from 1 to 150 µM, and the limit of detection (LOD) was determined to be 1.97 nM. The emission of N-CDs was quenched by Förster Resonance Energy Transfer (FRET) by adding bilirubin. These N-CDs showed extraordinary sensitivity and selectivity in the detection of bilirubin. Hence, this fluorescent probe has been proven successful in detecting the concentration of free bilirubin in human serum samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data associated with this research work has been presented in this paper and the supplementary material available in online.

Code Availability

Not applicable.

References

  1. Vítek L (2012) The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases. Front Pharmacol 3:1–7. https://doi.org/10.3389/fphar.2012.00055

    Article  Google Scholar 

  2. Wennberg RP (2000) The blood – brain barrier and bilirubin encephalopathy. Cell Mol Neurobiol 20:97–109. https://doi.org/10.1023/A:1006900111744

    Article  CAS  PubMed  Google Scholar 

  3. Watchko JF, Tiribelli C (2021) Bilirubin-induced neurologic damage – mechanisms and management approaches. New Engl J Med 369:2021–2030. https://doi.org/10.1056/NEJMra1308124

    Article  CAS  Google Scholar 

  4. Ahlfors CE, Wennberg RP, Ostrow JD, Tiribelli C (2009) Unbound (free) bilirubin: improving the paradigm for evaluating neonatal jaundice. Clin Chem 55:1288–1299. https://doi.org/10.1373/clinchem.2008.121269

    Article  CAS  PubMed  Google Scholar 

  5. Slusher TM, Zipursky A, Bhutani VK (2011) A global need for affordable Neonatal Jaundice technologies. Semin Perinatol 35:185–191. https://doi.org/10.1053/j.semperi.2011.02.014

    Article  PubMed  Google Scholar 

  6. Hansen TWR (2001) Bilirubin Brain Toxicity. J Perinatol 2001(21):S48–S51. https://doi.org/10.1038/sj.jp.7210634

    Article  Google Scholar 

  7. Wagner KH, Shiels RG, Lang CA, Khoei NS, Bulmer AC (2018) Diagnostic criteria and contributors to Gilbert’s syndrome. Crit Rev Clin Lab Sci 55:129–139. https://doi.org/10.1080/10408363.2018.1428526

    Article  CAS  PubMed  Google Scholar 

  8. Ahlfors CE (2000) Measurement of plasma unbound unconjugated bilirubin. Anal Biochem 279:130–135. https://doi.org/10.1006/abio.2000.4485

    Article  CAS  PubMed  Google Scholar 

  9. Rand RN, Pasqua AD (1962) A new diazo method for the determination of bilirubin. Clin Chem 8:570–578. https://doi.org/10.1093/clinchem/8.6.570

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Rosenzweig Z (1997) A fiber optic sensor for rapid analysis of bilirubin in serum. Anal Chim ACT 353:263–273. https://doi.org/10.1016/S0003-2670(97)87785-9

    Article  CAS  Google Scholar 

  11. Parnianchi F, Kashanian S, Nazari M, Santoro C, Bollella P, Varmira K (2021) Highly selective and sensitive molecularly imprinting electrochemical sensing platform for bilirubin detection in saliva. Microchem J 168:106367. https://doi.org/10.1016/j.microc.2021.106367

    Article  CAS  Google Scholar 

  12. Kannan P, Chen H, Lee VT, Kim D (2011) Highly sensitive amperometric detection of bilirubin using enzyme and gold nanoparticles on sol – gel film modified electrode. Talanta 86:400–407. https://doi.org/10.1016/j.talanta.2011.09.034

    Article  CAS  PubMed  Google Scholar 

  13. Senthilkumar T, Asha SK (2013) Self-assembly in tailor-made poly fluorenes: Synergistic effect of porous spherical morphology and FRET for visual sensing of bilirubin. Macromolecules 46:2159–2171. https://doi.org/10.1021/ma4000946

    Article  CAS  Google Scholar 

  14. Santhosh M, Chinnadayyala SR, Kakoti A, Goswami P (2014) Selective and sensitive detection of free bilirubin in blood serum using human serum albumin stabilized gold nanoclusters as fluorometric and colorimetric probe. Biosens Bioelectron 59:370–376. https://doi.org/10.1016/j.bios.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  15. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381. https://doi.org/10.1007/s12274-014-0644-3

    Article  CAS  Google Scholar 

  16. Liu S, Tian J, Wang L, Zhang Y, Qin X, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater 24:2037–2041. https://doi.org/10.1002/adma.201200164

    Article  CAS  PubMed  Google Scholar 

  17. Kong B, Zhu A, Ding C, Zhao X, Li B, Tian Y (2012) Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv Mater 24:5844–5848. https://doi.org/10.1002/adma.201202599

    Article  CAS  PubMed  Google Scholar 

  18. Tao H, Yang K, Ma Z, Wan J, Zhang Y, Kang Z, Liu Z (2012) In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 8:281–290. https://doi.org/10.1002/smll.201101706

    Article  CAS  PubMed  Google Scholar 

  19. Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H, Wei H, Zhang H, Sun H, Yang B (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47:6858–6860. https://doi.org/10.1039/c1cc11122a

    Article  CAS  Google Scholar 

  20. Bhatt M, Bhatt S, Vyas G, Raval IH, Haldar S, Paul P (2020) Water-dispersible fluorescent carbon dots as bioimaging agents and probes for Hg2+ and Cu2+ ions. ACS Appl Nano Mater 3:7096–7104. https://doi.org/10.1021/acsanm.0c01426

    Article  CAS  Google Scholar 

  21. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chemie Int Ed 49:4430–4434. https://doi.org/10.1002/anie.200906154

    Article  CAS  Google Scholar 

  22. Lin L, Zhang S (2012) Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem Commun 48:10177–10179. https://doi.org/10.1039/c2cc35559k

    Article  CAS  Google Scholar 

  23. Li M, Zhang SXA (2014) Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater 26:3104–3112. https://doi.org/10.1021/cm503256m

    Article  CAS  Google Scholar 

  24. Wang Y, Kalytchuk S, Zhang Y, Shi H, Kershaw SV, Rogach AL (2014) Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel. J Phys Chem Lett 5:1412–1420. https://doi.org/10.1021/jz5005335

    Article  CAS  PubMed  Google Scholar 

  25. Bhunia SK, Saha A, Maity AR, Ray SC, Jana NR (2013) Carbon nanoparticle-based fluorescent bioimaging probes. Sci Rep 3:1–7. https://doi.org/10.1038/srep01473

    Article  CAS  Google Scholar 

  26. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757. https://doi.org/10.1021/ja062677d

    Article  CAS  PubMed  Google Scholar 

  27. Qu D, Zheng M, Zhang L, Zhao H, Xie Z, Jing X, Haddad RE, Fan H, Sun Z (2014) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Rep 4:1–11. https://doi.org/10.1038/srep05294

    Article  CAS  Google Scholar 

  28. Karthikeyan R, Nelson DJ, John SA (2019) Non-enzymatic determination of purine nucleotides using a carbon dot modified glassy carbon electrode. Anal Methods 11:3866–3873. https://doi.org/10.1039/c9ay00718k

    Article  CAS  Google Scholar 

  29. Karthikeyan R, Nelson DJ, Ajith A, John SA (2019) Hetero atoms doped carbon dots modified electrodes for the sensitive and selective determination of phenolic anti-oxidant in coconut oil. J Electroanal Chem 848:113297. https://doi.org/10.1016/j.jelechem.2019.113297

    Article  CAS  Google Scholar 

  30. Liu C, Chang K, Guo W, Li H, Shen L, Chen W, Yan D (2014) Improving charge transport property and energy transfer with carbon quantum dots in Improving charge transport property and energy transfer with carbon quantum dots in inverted polymer solar cells. Appl Phys Lett 105:073306. https://doi.org/10.1063/1.4893994

    Article  CAS  Google Scholar 

  31. Varatharajan P, Banu IBS, Hafiz M, Vasmalai N (2023) Hydrothermal synthesis of orange fluorescent carbon dots and their application in fabrication of warm WLEDs and fluorescent ink. Phys B Condens Matter 654:414703. https://doi.org/10.1016/j.physb.2023.414703

    Article  CAS  Google Scholar 

  32. Cailotto S, Mazzaro R, Enrichi F, Vomiero A, Cattaruzza E, Cristofori D, Amadio E, Perosa A (2018) Design of carbon dots for metal-free photoredox catalysis. ACS Appl Mater Interfaces 10:40560–40567. https://doi.org/10.1021/acsami.8b14188

    Article  CAS  PubMed  Google Scholar 

  33. Feng T, Ai X, An G, Yang P, Zhao Y (2016) Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 10:4410–4420. https://doi.org/10.1021/acsnano.6b00043

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Li M, Tian L, Qiu Y, Yu Q, Wang X, Guo R, He Q (2020) Facile strategy by hyaluronic acid functional carbon dot-doxorubicin nanoparticles for CD44 targeted drug delivery and enhanced breast cancer therapy. Int J Pharm Pharm Sci 578:119122. https://doi.org/10.1016/j.ijpharm.2020.119122

    Article  CAS  Google Scholar 

  35. Mukherjee S, Yi J, Banerjee P, Chen Q, Zhou S (2017) Biocompatible chitosan-carbon dots hybrid nanogels for NIR-imaging-guided synergistic photothermal/chemo-therapy. ACS Appl Mater Interfaces 9:18639–18649. https://doi.org/10.1021/acsami.7b06062

    Article  CAS  PubMed  Google Scholar 

  36. Anjana RR, Devi JSA, Jayasree M, Aparna RS, Aswathy B, Praveen GL, Lekha GM (2018) S, N-doped carbon dots as a fluorescent probe for bilirubin. Microchim Acta 185:1–11. https://doi.org/10.1007/s00604-017-2574-8

    Article  CAS  Google Scholar 

  37. Roshni V, Gujar V, Muntjeeb S, Doshi P, Ottoor D (2021) Novel and reliable chemosensor based on C. dots from sunflower seeds for the distinct detection of picric acid and bilirubin. Spectrochim Acta A Mol Biomol Spectrosc 250:119354. https://doi.org/10.1016/j.saa.2020.119354

    Article  CAS  PubMed  Google Scholar 

  38. Li N, Hu C, Zhang W, Ma R, Zhang L, Qiao J (2022) Nitrogen-doped carbon dots as a fluorescent probe for the highly sensitive detection of bilirubin and cell imaging. Luminescence 37:913–921. https://doi.org/10.1002/bio.4236

    Article  CAS  PubMed  Google Scholar 

  39. Kumar RS, Shakambari G, Ashokkumar B, Nelson DJ, John SA, Varalakshmi P (2018) Nitrogen-doped graphene quantum dot-combined sodium 10- amino-2-methoxyundecanoate : Studies of proinflammatory gene expression and live cell imaging. ACS Omega 3:11982–11992. https://doi.org/10.1021/acsomega.8b02085

    Article  CAS  Google Scholar 

  40. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (2008) Introduction to spectroscopy, 4th edn. Cengage Learning, Boston

    Google Scholar 

  41. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Boston

    Book  Google Scholar 

  42. Santhosh M, Chinnadayyala SR, Singh NK, Goswami P (2016) Human serum albumin-stabilized gold nanoclusters act as an electron transfer bridge supporting specific electrocatalysis of bilirubin useful for biosensing applications. Bioelectrochemistry 111:7–14. https://doi.org/10.1016/j.bioelechem.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  43. Basu S, Sahoo AK, Paul A, Chattopadhyay A (2016) Thumb imprint-based detection of hyperbilirubinemia using luminescent gold nanoclusters. Sci Rep 6:39005. https://doi.org/10.1038/srep39005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Feng Q, Du Y, Zhang C, Zheng Z, Hu F, Wang Z, Wang C (2013) Synthesis of the multi–walled carbon nanotubes–COOH/graphene/gold nanoparticles nanocomposite for simple determination of Bilirubin in human blood serum. Sens Actuators B Chem 185:337–344. https://doi.org/10.1016/j.snb.2013.05.035

    Article  CAS  Google Scholar 

  45. Srinivasan V, Jhonsi MA, Dhenadhayalan N, Lin K, Ananth DA, Sivasudha T, Narayanaswamy R, Kathiravan A (2019) Pyrene-based prospective biomaterial: In vitro bioimaging, protein binding studies and detection of bilirubin and Fe3+. Spectrochim Acta A Mol Biomol Spectrosc 221:117150. https://doi.org/10.1016/j.saa.2019.117150

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work reported in the paper has not received any funding.

Author information

Authors and Affiliations

Authors

Contributions

D.J.N.: Investigation, Formal analysis, Writing N.V.: Investigation, S.A.J.: Conceptualization, Supervision Sethuraman M.G.S.: Supervision and Review.

Corresponding author

Correspondence to M. G. Sethuraman.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All the authors are agreed to publishing the paper.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3415 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, D.J., Vasimalai, N., John, S.A. et al. Turn-Off Fluorometric Determination of Bilirubin Using Facile Synthesized Nitrogen-Doped Carbon Dots as a Fluorescent Probe. J Fluoresc (2024). https://doi.org/10.1007/s10895-023-03572-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03572-x

Keywords

Navigation