Skip to main content
Log in

Synthesis of Di(thiophen-2-yl) Substituted Pyrene-Pyridine Conjugated Scaffold and DFT Insights: A Selective and Sensitive Colorimetric, and Ratiometric Fluorescent Sensor for Fe(III) Ions

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this context, we used the multicomponent Chichibabin pyridine synthesis reaction to synthesize a novel di(thiophen-2-yl) substituted and pyrene-pyridine fluorescent molecular hybrid. The computational (DFT and TD-DFT) and experimental investigations were performed to understand the photophysical properties of the synthesized new structural scaffold. The synthesized ligand displays highly selective fluorescent sensing properties towards Fe3+ ions when compared to other competitive metal ions (Al3+, Ba2+, Ca2+, Cd2+, Co2+, Cr3+, Cu2+, Fe2+, Hg2+, Na+, Ni2+, Pb2+, Sr2+, Sn2+ and Zn2+). The photophysical properties studies reveal that the synthesized hybrid molecule has a binding constant of 2.30 × 103 M−1 with limit of detection (LOD) of 4.56 × 10−5 M (absorbance mode) and 5.84 × 10–5 M (emission mode) for Fe3+ ions. We believe that the synthesized pyrene-conjugated hybrid ligand can serve as a potential fluorescent chemosensor for the selective and specific detection of Fe3+ ions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All the experimental characterization and computational (DFT and TD-DFT) data obtained in this research work are included in this article and its supporting information file.

References

  1. Dutta M, Das D (2012) Recent developments in fluorescent sensors for trace-level determination of toxic-metal ions. TrAC, Trends Anal Chem 32:113–132

    Article  CAS  Google Scholar 

  2. De Acha N, Elosúa C, Corres JM, Arregui FJ (2019) Fluorescent sensors for the detection of heavy metal ions in aqueous media. Sensors 19(3):599

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114(8):4564–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ayyavoo K, Velusamy P (2021) Pyrene based materials as fluorescent probes in chemical and biological fields. New J Chem 45(25):10997–11017

    Article  CAS  Google Scholar 

  5. Hu Y, Liu Y, Kim G, Jun EJ, Swamy KMK, Kim Y, Kim S-J, Yoon J (2015) Pyrene based fluorescent probes for detecting endogenous zinc ions in live cells. Dyes Pigm 113:372–377. https://doi.org/10.1016/j.dyepig.2014.09.010

    Article  CAS  Google Scholar 

  6. Goswami S, Chakraborty S, Paul S, Halder S, Panja S, Mukhopadhyay SK (2014) A new pyrene based highly sensitive fluorescence probe for copper(ii) and fluoride with living cell application. Org Biomol Chem 12(19):3037–3044. https://doi.org/10.1039/C4OB00067F

    Article  CAS  PubMed  Google Scholar 

  7. Figueira-Duarte TM, Müllen K (2011) Pyrene-Based Materials for Organic Electronics. Chem Rev 111(11):7260–7314. https://doi.org/10.1021/cr100428a

    Article  CAS  PubMed  Google Scholar 

  8. Maeda H, Maeda T, Mizuno K, Fujimoto K, Shimizu H, Inouye M (2006) Alkynylpyrenes as improved pyrene-based biomolecular probes with the advantages of high fluorescence quantum yields and long absorption/emission wavelengths. Chem Euro J 12(3):824–831. https://doi.org/10.1002/chem.200500638

    Article  CAS  Google Scholar 

  9. Singh Rana V, Anand V, Shekhar Sarkar S, Sandhu N, Verma M, Naidu S, Kumar K, Yadav RK, Shrivastava R, Singh AP (2023) A novel pyrene-based aggregation induced enhanced emission active Schiff base fluorophore as a selective “turn-on” sensor for Sn2+ ions and its application in lung adenocarcinoma cells. J Photochem Photobiol, A 436:114409. https://doi.org/10.1016/j.jphotochem.2022.114409

    Article  CAS  Google Scholar 

  10. Shellaiah M, Venkatesan P, Thirumalaivasan N, Wu S-P, Sun K-W (2023) Pyrene-based fluorescent probe for “Off-on-Off” sequential detection of Cu2+ and CN− with HeLa cells imaging. Chemosensors 11(2):115

    Article  CAS  Google Scholar 

  11. Liu L, Zhang H, Gao Y, Zhu H, Yang H, Zhang R, Yang Y, Gao H (2023) Pyrene-acylhydrazone-based Turn-on Fluorescent Probe for Highly Sensitive Detection Cu2+ and Application in Bioimaging. J Fluoresc. https://doi.org/10.1007/s10895-023-03465-z

    Article  PubMed  Google Scholar 

  12. Rani BK, John SA (2021) A highly selective turn-on fluorescent chemosensor for detecting zinc ions in living cells using symmetrical pyrene system. J Photochem Photobiol, A 418:113372. https://doi.org/10.1016/j.jphotochem.2021.113372

    Article  CAS  Google Scholar 

  13. Manandhar E, Broome JH, Myrick J, Lagrone W, Cragg PJ, Wallace KJ (2011) A pyrene–based fluorescent sensor for Zn 2+ ions: a molecular 'butterfly'. Chem Commun 47(31):8796–8798

    Article  CAS  Google Scholar 

  14. Ni X-L, Wang S, Zeng X, Tao Z, Yamato T (2011) Pyrene-Linked Triazole-Modified Homooxacalix[3]arene: A Unique C3 Symmetry Ratiometric Fluorescent Chemosensor for Pb2+. Org Lett 13(4):552–555. https://doi.org/10.1021/ol102914t

    Article  CAS  PubMed  Google Scholar 

  15. D’Aléo A, Cecchetto E, De Cola L, Williams RM (2009) Metal ion enhanced charge transfer in a terpyridine-bis-pyrene system. Sensors 9(5):3604–3626

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fermi A, Ceroni P, Roy M, Gingras M, Bergamini G (2014) Synthesis, characterization, and metal ion coordination of a multichromophoric highly luminescent polysulfurated pyrene. Chem Eur J 20(34):10661–10668. https://doi.org/10.1002/chem.201402021

    Article  CAS  PubMed  Google Scholar 

  17. McCall KA, Fierke CA (2000) Colorimetric and fluorimetric assays to quantitate micromolar concentrations of transition metals. Anal Biochem 284(2):307–315. https://doi.org/10.1006/abio.2000.4706

    Article  CAS  PubMed  Google Scholar 

  18. Chen S-Y, Li Z, Li K, Yu X-Q (2021) Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. Coord Chem Rev 429:213691. https://doi.org/10.1016/j.ccr.2020.213691

    Article  CAS  Google Scholar 

  19. Silva AS, Brandão GC, Ferreira SLC, dos Santos AMP (2022) Sequential and simultaneous determination of Cd, Fe and Ni in toothpastes employing slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry. Anal Lett 55(8):1192–1206. https://doi.org/10.1080/00032719.2021.1991941

    Article  CAS  Google Scholar 

  20. Bobrowski A, Nowak K, Zarębski J (2005) Application of a bismuth film electrode to the voltammetric determination of trace iron using a Fe (III)–TEA–BrO 3− catalytic system. Anal Bioanal Chem 382:1691–1697

    Article  CAS  PubMed  Google Scholar 

  21. Spolaor A, Vallelonga P, Gabrieli J, Cozzi G, Boutron C, Barbante C (2012) Determination of Fe2+ and Fe3+ species by FIA-CRC-ICP-MS in Antarctic ice samples. J Anal At Spectrom 27(2):310–317

    Article  CAS  Google Scholar 

  22. Nicolaı M, Rosin C, Tousset N, Nicolai Y (1999) Trace metals analysis in estuarine and seawater by ICP-MS using on line preconcentration and matrix elimination with chelating resin. Talanta 50(2):433–444

    Article  PubMed  Google Scholar 

  23. Liu S-A, Li D, Li S, Teng F-Z, Ke S, He Y, Lu Y (2014) High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS. J Anal At Spectrom 29(1):122–133

    Article  CAS  Google Scholar 

  24. Karak A, Manna SK, Mahapatra AK (2022) Triphenylamine-based small-molecule fluorescent probes. Anal Methods 14(10):972–1005. https://doi.org/10.1039/D2AY00134A

    Article  CAS  PubMed  Google Scholar 

  25. Kumawat LK, Asif M, Gupta VK (2017) Dual ion selective fluorescence sensor with potential applications in sample monitoring and membrane sensing. Sens Actuators, B Chem 241:1090–1098. https://doi.org/10.1016/j.snb.2016.10.031

    Article  CAS  Google Scholar 

  26. Taylor KG, Konhauser KO (2011) Iron in earth surface systems: a major player in chemical and biological processes. Elements 7(2):83–88

    Article  CAS  Google Scholar 

  27. Muñoz M, García-Erce JA, Remacha ÁF (2011) Disorders of iron metabolism. Part II: iron deficiency and iron overload. J Clin Pathol 64(4):287–296

    Article  PubMed  Google Scholar 

  28. Lieu PT, Heiskala M, Peterson PA, Yang Y (2001) The roles of iron in health and disease. Mol Aspects Med 22(1–2):1–87

    Article  CAS  PubMed  Google Scholar 

  29. Sundararajan S, Rabe H (2021) Prevention of iron deficiency anemia in infants and toddlers. Pediatr Res 89(1):63–73. https://doi.org/10.1038/s41390-020-0907-5

    Article  PubMed  Google Scholar 

  30. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) Copper, iron and zinc in Alzheimer's disease senile plaques. J Neurol Sci 158(1):47–52. https://doi.org/10.1016/S0022-510X(98)00092-6

    Article  CAS  PubMed  Google Scholar 

  31. Youdim MBH, Ben-Shachar D, Riederer P (1993) The possible role of iron in the etiopathology of parkinson's disease. Mov Disord 8(1):1–12. https://doi.org/10.1002/mds.870080102

    Article  CAS  PubMed  Google Scholar 

  32. Sahoo SK, Crisponi G (2019) Recent advances on iron (III) selective fluorescent probes with possible applications in bioimaging. Molecules 24(18):3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sahoo SK, Sharma D, Bera RK, Crisponi G, Callan JF (2012) Iron (III) selective molecular and supramolecular fluorescent probes. Chem Soc Rev 41(21):7195–7227

    Article  CAS  PubMed  Google Scholar 

  34. Qiu J, Zhong C, Liu M, Yuan Y, Zhu H, Gao Y (2021) Rational design and bioimaging application of water-soluble Fe3+ fluorescent probes. New J Chem 45(11):5184–5194. https://doi.org/10.1039/D0NJ06253G

    Article  CAS  Google Scholar 

  35. Shellaiah M, Wu Y-H, Singh A, Raju MVR, Lin H-C (2013) Novel pyrene-and anthracene-based Schiff base derivatives as Cu 2+ and Fe 3+ fluorescence turn-on sensors and for aggregation induced emissions. Journal of Materials Chemistry A 1(4):1310–1318

    Article  CAS  Google Scholar 

  36. Huang L, Hou F, Cheng J, Xi P, Chen F, Bai D, Zeng Z (2012) Selective off–on fluorescent chemosensor for detection of Fe 3+ ions in aqueous media. Org Biomol Chem 10(48):9634–9638

    Article  CAS  PubMed  Google Scholar 

  37. Mao J, He Q, Liu W (2010) An rhodamine-based fluorescence probe for iron(III) ion determination in aqueous solution. Talanta 80(5):2093–2098. https://doi.org/10.1016/j.talanta.2009.11.013

    Article  CAS  PubMed  Google Scholar 

  38. Kumar P, Kumar V, Gupta R (2015) Arene-based fluorescent probes for the selective detection of iron. RSC Adv 5(118):97874–97882. https://doi.org/10.1039/C5RA20760F

    Article  CAS  Google Scholar 

  39. Zhang B, Liu H, Wu F, Hao G, Chen Y, Tan C, Tan Y, Jiang Y (2017) A dual-response quinoline-based fluorescent sensor for the detection of Copper (II) and Iron(III) ions in aqueous medium. Sens Actuators, B Chem 243:765–774. https://doi.org/10.1016/j.snb.2016.12.067

    Article  CAS  Google Scholar 

  40. Zhao M, Deng Z, Tang J, Zhou X, Chen Z, Li X, Yang L, Ma L-J (2016) 2-(1-Pyrenyl) benzimidazole as a ratiometric and “turn-on” fluorescent probe for iron(iii) ions in aqueous solution. Analyst 141(7):2308–2312. https://doi.org/10.1039/C5AN02565F

    Article  CAS  PubMed  Google Scholar 

  41. Long L, Zhou L, Wang L, Meng S, Gong A, Zhang C (2014) A ratiometric fluorescent probe for iron (III) and its application for detection of iron (III) in human blood serum. Anal Chim Acta 812:145–151

    Article  CAS  PubMed  Google Scholar 

  42. Rasin P, Manakkadan V, Vadakkedathu Palakkeezhillam VN, Haribabu J, Echeverria C, Sreekanth A (2022) Simple fluorescence sensing approach for selective detection of Fe3+ ions: live-cell imaging and logic gate functioning. ACS Omega 7(37):33248–33257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jun JV, Chenoweth DM, Petersson EJ (2020) Rational design of small molecule fluorescent probes for biological applications. Org Biomol Chem 18(30):5747–5763. https://doi.org/10.1039/D0OB01131B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fu Y, Finney NS (2018) Small-molecule fluorescent probes and their design. RSC Adv 8(51):29051–29061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Niranjan R, Prasad GD, Achankunju S, Arockiaraj M, Velumani K, Nachimuthu K, Sundramoorthy AK, Neogi I, Nallasivam JL, Rajeshkumar V, Mahadevegowda SH (2023) Multicomponent reaction based tolyl-substituted and pyrene-pyridine conjugated isomeric ratiometric fluorescent probes: a comparative investigation of photophysical and Hg(II)-sensing behaviors. J Fluoresc. https://doi.org/10.1007/s10895-023-03467-x

    Article  PubMed  Google Scholar 

  46. Chen P (2005) Molecular interfacial phenomena of polymers and biopolymers. Taylor & Francis US

  47. Divya KP, Savithri S, Ajayaghosh A (2014) A fluorescent molecular probe for the identification of zinc and cadmium salts by excited state charge transfer modulation. Chem Commun 50(45):6020–6022

    Article  CAS  Google Scholar 

  48. Manigandan S, Muthusamy A, Nandhakumar R, David CI (2020) Recognition of Fe3+ by a new azine-based fluorescent “turn-off” chemosensor and its binding mode analysis using DFT. J Mol Struct 1208:127834

    Article  CAS  Google Scholar 

  49. Ye F, Chai Q, Liang X-M, Li M-Q, Wang Z-Q, Fu Y (2017) A highly selective and sensitive fluorescent turn-off probe for Cu2+ based on a guanidine derivative. Molecules 22(10):1741

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mandal A, Choudhury A, Kumar R, Iyer PK, Mal P (2020) Exploring the semiconductor properties of a charge transfer cocrystal of 1-aminopyrene and TCNQ. CrystEngComm 22(4):720–727

    Article  CAS  Google Scholar 

  51. Sasitha T, John WJ (2021) Design, docking, and DFT investigations of 2, 6-bis (3, 4-dihydroxyphenyl)-3-phenethylpiperidin-4-one. Heliyon 7 (2)

  52. Padghan SD, Bhosale RS, Bhosale SV, Antolasic F, Al Kobaisi M, Bhosale SV (2017) Pyrene-phosphonate conjugate: aggregation-induced enhanced emission, and selective Fe3+ ions sensing properties. Molecules 22(9):1417

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rasin P, Mathew MM, Manakkadan V, Palakkeezhillam VNV, Sreekanth A (2022) A highly fluorescent pyrene-based sensor for selective detection Of Fe3+ ion in aqueous medium: computational investigations. J Fluoresc 32(3):1229–1238. https://doi.org/10.1007/s10895-022-02940-3

    Article  CAS  PubMed  Google Scholar 

  54. Phapale D, Gaikwad A, Das D (2017) Selective recognition of Cu (II) and Fe (III) using a pyrene based chemosensor. Spectrochim Acta Part A Mol Biomol Spectrosc 178:160–165. https://doi.org/10.1016/j.saa.2017.01.064

    Article  CAS  Google Scholar 

  55. Padghan SD, Puyad AL, Bhosale RS, Bhosale SV, Bhosale SV (2017) A pyrene based fluorescent turn-on chemosensor: aggregation-induced emission enhancement and application towards Fe3+ and Fe2+ recognition. Photochem Photobiol Sci 16(11):1591–1595. https://doi.org/10.1039/C7PP00329C

    Article  CAS  PubMed  Google Scholar 

  56. Dhivya R, Gomathi A, Viswanathamurthi P (2019) Pyrene based fluorescent turn-on chemosensor for sequential detection of Fe3+ and Fe2+ ions and its application in live cell imaging. J Fluoresc 29(3):797–802. https://doi.org/10.1007/s10895-019-02392-2

    Article  CAS  PubMed  Google Scholar 

  57. Raj T, Saluja P, Singh N (2015) A new class of pyrene based multifunctional chemosensors for differential sensing of metals in different media: Selective recognition of Zn2+ in organic and Fe3+ in aqueous medium. Sens Actuators, B Chem 206:98–106. https://doi.org/10.1016/j.snb.2014.09.049

    Article  CAS  Google Scholar 

  58. Mukherjee S, Talukder S (2016) A reversible pyrene-based turn-on luminescent chemosensor for selective detection of Fe3+ in aqueous environment with logic gate application. J Fluoresc 26(3):1021–1028. https://doi.org/10.1007/s10895-016-1790-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Institute of Technology Andhra Pradesh for providing the departmental infrastructure to carry out the research work. We also sincerely acknowledge Prof. K. V. Ramanujachary, Rowan University, USA, for providing LCMS data for the probe during the reaction optimization. We also thanks Dr. Jothi L. Nallasivam, National Institute of Technology Tiruchirappalli, India and Prof. Ashok K. Sundramoorthy, Saveetha Institute of Medical and Technical Sciences, India, for helping some partial experimental characterization.

Funding

National Institute of Technology Andhra Pradesh,SEED grant No. NITAP/SD-G/19/2020,SEED grant No. NITAP/SD-G/19/2020,SEED grant No. NITAP/SD-G/19/2020

Author information

Authors and Affiliations

Authors

Contributions

We confirm that the submitted manuscript has been read and approved by all listed authors. The optimization of the multicomponent reaction and the synthesis of the molecular probe is done by G.D. Prasad. Photophysical properties studies were carried out by G.D. Prasad, R. Niranjan and M. Arockiaraj. The probe structure characterization and analysis (NMR, FTIR and HRMS) done by G.D. Prasad, R. Niranjan, M. Arockiaraj, V. Rajeshkumar and S.H. Mahadevegowda. The DFT calculations were done by G.D. Prasad. The manuscript draft preparation and final manuscript corrections were done by G.D. Prasad and S.H. Mahadevegowda.

Corresponding author

Correspondence to Surendra H. Mahadevegowda.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11573 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, G.D., Niranjan, R., Arockiaraj, M. et al. Synthesis of Di(thiophen-2-yl) Substituted Pyrene-Pyridine Conjugated Scaffold and DFT Insights: A Selective and Sensitive Colorimetric, and Ratiometric Fluorescent Sensor for Fe(III) Ions. J Fluoresc (2024). https://doi.org/10.1007/s10895-023-03554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03554-z

Keywords

Navigation