Skip to main content
Log in

A Commercially Available 2–aminoanthracene Fluorescent Probe for Rapid and Sensitive Detection of Hypochlorite in 100% Buffer Solution and its Application in Complex Water Samples

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Hypochlorite (ClO), a crucial chemical in the living organism, engages in various physiological activities. However, high amounts of ClO result in oxidative damage. In this work, a commercially available 2–aminoanthracene (AA) was used to detect ClO. AA demonstrated distinct properties such as superior selectivity and rapid response (< 30 s) with a low detection limit (140 nM) towards ClO in 100% buffer solution. Furthermore, the probe exhibited a notable achievement by effectively identifying the presence of ClO in complicated water samples. In conclusion, AA offers an easy–to–use and accurate method for quantifying ClO in complex water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information file).

References

  1. de Araujo TH, Okada SS, Ghosn EEB et al (2013) Intracellular localization of myeloperoxidase in murine peritoneal B-lymphocytes and macrophages. Cell Immunol 281:27–30. https://doi.org/10.1016/j.cellimm.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  2. Zhou X, Zhao J, Li Z et al (2016) Enhancement effects of ultrasound on secondary wastewater effluent disinfection by sodium hypochlorite and disinfection by-products analysis. Ultrason Sonochem 29:60–66. https://doi.org/10.1016/j.ultsonch.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  3. Li H, Xiong J, Zhang G et al (2020) Enhanced thallium(I) removal from wastewater using hypochlorite oxidation coupled with magnetite-based biochar adsorption. Sci Total Environ 698:134166. https://doi.org/10.1016/j.scitotenv.2019.134166

    Article  CAS  PubMed  Google Scholar 

  4. Cheng X, Wang S, Huang W et al (2022) Current status of hypochlorite technology on the wastewater treatment and sludge disposal: performance, principals and prospects. Sci Total Environ 803:150085. https://doi.org/10.1016/j.scitotenv.2021.150085

    Article  CAS  PubMed  Google Scholar 

  5. Zheng G, Filippelli GM, Salamova A (2020) Increased indoor exposure to commonly used disinfectants during the COVID-19 pandemic. Environ Sci Technol Lett 7:760–765. https://doi.org/10.1021/acs.estlett.0c00587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perez-Vilar J, Boucher RC (2004) Reevaluating gel-forming mucins’ roles in cystic fibrosis lung Disease. Free Radic Biol Med 37:1564–1577. https://doi.org/10.1016/j.freeradbiomed.2004.07.027

    Article  CAS  PubMed  Google Scholar 

  7. Steinbeck MJ, Nesti LJ, Sharkey PF, Parvizi J (2007) Myeloperoxidase and chlorinated peptides in osteoarthritis: potential biomarkers of the Disease. J Orthop Res 25:1128–1135. https://doi.org/10.1002/jor.20400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stanley NR, Pattison DI, Hawkins CL (2010) Ability of Hypochlorous Acid and N-Chloramines to chlorinate DNA and its constituents. Chem Res Toxicol 23:1293–1302. https://doi.org/10.1021/tx100188b

    Article  CAS  PubMed  Google Scholar 

  9. Reja SI, Bhalla V, Sharma A et al (2014) A highly selective fluorescent probe for hypochlorite and its endogenous imaging in living cells. Chem Commun 50:11911–11914. https://doi.org/10.1039/C4CC05356G

    Article  CAS  Google Scholar 

  10. Sugiyama S, Kugiyama K, Aikawa M et al (2004) Hypochlorous Acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in Plaque Erosion and Thrombogenesis. Arterioscler Thromb Vasc Biol 24:1309–1314. https://doi.org/10.1161/01.ATV.0000131784.50633.4f

    Article  CAS  PubMed  Google Scholar 

  11. Erdemir E, Suna G, Gunduz S et al (2022) Rapid, ultrasensitive, highly selective detection of toxic hg(II) ions in seabass, swordfish and water samples. Food Chem 371:131309. https://doi.org/10.1016/j.foodchem.2021.131309

    Article  CAS  PubMed  Google Scholar 

  12. Erdemir E, Suna G, Gunduz S et al (2022) Tetraphenylethylene–thiosemicarbazone based ultrafast, highly sensitive detection of hypochlorite in aqueous environments and dairy products. Anal Chim Acta 1218:340029. https://doi.org/10.1016/j.aca.2022.340029

    Article  CAS  PubMed  Google Scholar 

  13. Suna G, Erdemir E, Liv L et al (2022) Multi-channel detection of au(III) ions by a novel rhodamine based probe. Sens Actuators B Chem 360:131658. https://doi.org/10.1016/j.snb.2022.131658

    Article  CAS  Google Scholar 

  14. Karakuş E, Erdemir E, Suna G et al (2021) Fluorescein Based three-channel probe for the selective and sensitive detection of CO32 – ions in an aqueous environment and Real Water samples. J Fluoresc 31:1617–1625. https://doi.org/10.1007/s10895-021-02779-0

    Article  CAS  PubMed  Google Scholar 

  15. Suna G, Gunduz S, Topal S et al (2023) A unique triple–channel fluorescent probe for discriminative detection of Cyanide, hydrazine, and hypochlorite. Talanta 257:124365. https://doi.org/10.1016/j.talanta.2023.124365

    Article  CAS  PubMed  Google Scholar 

  16. Erdemir E, Suna G, Liv L et al (2023) Smartphone-assisted dual-channel discriminative detection of hg(II) and Cu(II) ions with a simple, unique, readily available probe. Sens Actuators B Chem 382:133487. https://doi.org/10.1016/j.snb.2023.133487

    Article  CAS  Google Scholar 

  17. Karakuş E, Cakan-Akdogan G, Emrullahoğlu M (2015) A guanidinium modified rhodamine-based fluorescent probe for in vitro/vivo imaging of gold ions. Anal Methods 7:8004–8008. https://doi.org/10.1039/C5AY01581B

    Article  CAS  Google Scholar 

  18. Yin H, Chi H, Shang Z et al (2021) Development of a new water-soluble fluorescence probe for hypochlorous acid detection in drinking water. Food Chem Mol Sci 2:100027. https://doi.org/10.1016/j.fochms.2021.100027

    Article  CAS  Google Scholar 

  19. Zhang R, Song B, Yuan J (2018) Bioanalytical methods for hypochlorous acid detection: recent advances and challenges. TrAC Trends Anal Chem 99:1–33. https://doi.org/10.1016/j.trac.2017.11.015

    Article  CAS  Google Scholar 

  20. Suna G, Erdemir E, Gunduz S et al (2023) Monitoring of Hypochlorite Level in Fruits, vegetables, and dairy products: a BODIPY-Based fluorescent probe for the Rapid and highly selective detection of Hypochlorite. ACS Omega 8:22984–22991. https://doi.org/10.1021/acsomega.3c02069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karakuş E (2021) A rhodamine based fluorescent chemodosimeter for the selective and sensitive detection of copper (II) ions in aqueous media and living cells. J Mol Struct 1224:129037. https://doi.org/10.1016/j.molstruc.2020.129037

    Article  CAS  Google Scholar 

  22. Ma C, Zhong G, Zhao Y et al (2020) Recent development of synthetic probes for detection of hypochlorous acid/hypochlorite. Spectrochim Acta Part A Mol Biomol Spectrosc 240:118545. https://doi.org/10.1016/j.saa.2020.118545

    Article  CAS  Google Scholar 

  23. Malkondu S, Erdemir S, Karakurt S (2020) Red and blue emitting fluorescent probe for Cyanide and hypochlorite ions: Biological sensing and environmental analysis. Dye Pigment 174:108019. https://doi.org/10.1016/j.dyepig.2019.108019

    Article  CAS  Google Scholar 

  24. Gan Y, Yin G, Zhang X et al (2021) Turn-on fluorescent probe for sensing exogenous and endogenous hypochlorous acid in living cells, zebrafishes and mice. Talanta 225:122030. https://doi.org/10.1016/j.talanta.2020.122030

    Article  CAS  PubMed  Google Scholar 

  25. Hao Y, Zhang Y, Sun Q et al (2021) Phenothiazine-coumarin-pyridine hybrid as an efficient fluorescent probe for ratiometric sensing hypochlorous acid. Microchem J 171:106851. https://doi.org/10.1016/j.microc.2021.106851

    Article  CAS  Google Scholar 

  26. Zhang J, Zhang D, Xiao L, Pu S (2021) Development of an ultrasensitive Ru(II) complex-based fluorescent probe with phenothiazine unit for selective detection HOCl and its application in water samples. Dye Pigment 188:109179. https://doi.org/10.1016/j.dyepig.2021.109179

    Article  CAS  Google Scholar 

  27. Kwon N, Chen Y, Chen X et al (2022) Recent progress on small molecule-based fluorescent imaging probes for hypochlorous acid (HOCl)/hypochlorite (OCl–). Dye Pigment 200:110132. https://doi.org/10.1016/j.dyepig.2022.110132

    Article  CAS  Google Scholar 

  28. Chen L, Park SJ, Wu D et al (2018) A two-photon ESIPT based fluorescence probe for specific detection of hypochlorite. Dye Pigment 158:526–532. https://doi.org/10.1016/j.dyepig.2018.01.027

    Article  CAS  Google Scholar 

  29. Shangguan M, Jiang X, Lu Z et al (2019) A coumarin-based fluorescent probe for hypochlorite ion detection in environmental water samples and living cells. Talanta 202:303–307. https://doi.org/10.1016/j.talanta.2019.04.074

    Article  CAS  PubMed  Google Scholar 

  30. Suna G, Gunduz S (2023) An Anthracene and Indole-based fluorescent probe for the detection of chromium(III) ions in Real Water samples. J Fluoresc 33:185–190. https://doi.org/10.1007/s10895-022-03041-x

    Article  CAS  PubMed  Google Scholar 

  31. Karakuş E, Gunduz S, Liv L, Ozturk T (2020) Fluorescent and electrochemical detection of Cu (II) ions in aqueous environment by a novel, simple and readily available AIE probe. J Photochem Photobiol A Chem 400:112702. https://doi.org/10.1016/j.jphotochem.2020.112702

    Article  CAS  Google Scholar 

  32. Karakuş E (2020) An anthracene based fluorescent probe for the selective and sensitive detection of chromium (III) ions in an aqueous medium and its practical application. Turkish J Chem 44:941–949. https://doi.org/10.3906/kim-2003-41

    Article  CAS  Google Scholar 

  33. Shyamal M, Maity S, Maity A et al (2018) Aggregation induced emission based turn-off fluorescent chemosensor for selective and swift sensing of mercury (II) ions in water. Sens Actuators B Chem 263:347–359. https://doi.org/10.1016/j.snb.2018.02.130

    Article  CAS  Google Scholar 

  34. Erdemir S, Kocyigit O (2016) Anthracene excimer-based turn on fluorescent sensor for Cr3 + and Fe3 + ions: its application to living cells. Talanta 158:63–69. https://doi.org/10.1016/j.talanta.2016.05.017

    Article  CAS  PubMed  Google Scholar 

  35. Xu L, Wu M, Zhao L et al (2020) A novel highly sensitive and near-infrared fluorescent probe for detecting hypochlorite and its application in actual water sample and bioimaging. Talanta 215:120892. https://doi.org/10.1016/j.talanta.2020.120892

    Article  CAS  PubMed  Google Scholar 

  36. Gao G, Zhao P, Zhou J et al (2020) A commercially available NIR fluorescence probe for the detection of hypochlorite and its application in cell imaging. Microchem J 159:105311. https://doi.org/10.1016/j.microc.2020.105311

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges Eda ERDEMİR for the graphical abstract design.

Funding

The author gratefully acknowledge TUBITAK National Metrology Institute (UME) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Garen Suna:Conceptualization, Methodology, Formal analysis, Supervision, Writing original draft, Writing – review & editing.

Corresponding author

Correspondence to Garen Suna.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suna, G. A Commercially Available 2–aminoanthracene Fluorescent Probe for Rapid and Sensitive Detection of Hypochlorite in 100% Buffer Solution and its Application in Complex Water Samples. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03522-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03522-7

Keywords

Navigation