Skip to main content
Log in

Effect of Substituents on Solubility, Medicinal, Absorption, Emission and Cationic/Anionic Detection Properties of Anthraquinone Derivatives

  • REVIEW
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Anthraquinones constitute an important class of compounds with wide applications. The solubility of derivatives at 298.15 K was discussed in ethanol–water solution and at atmospheric pressure, the solubility of 1-amino-4-hydroxy-9,10-anthraquinone (AHAQ) in binary solvents (ethanol–water combinations) was determined. Colour strength and fastening properties depend upon the kind and position of a hydrophobic group connected to the phenoxy ring of Anthraquinone moiety. There is a continuing interest in the creation of novel anthraquinone derivatives with biological activities since they have demonstrated potential for treating multiple sclerosis. For this purpose, by utilizing voltammetric and absorption studies, interactions of various derivatives with calf thymus DNA (ct-DNA) and the cationic surfactant cetyltrimethylammoniumbromide (CTAB) were examined. Here prominent Hydrophobic interaction and electron transfer resulting in binding to CTAB micelles were observed. The polarity index of the media was assessed and associated with the electrochemical parameters. The medicinal behaviour of Anthraquinone derivatives was a result of electron transfer reactions with DNA. UV–Visible and fluorescence properties were due to the transitions between n* and π* orbitals. Large absorption band with low dichroic ratio was characteristic of various derivatives of Anthraquinone. Presence of –NH group proves various derivatives remarkable calorimetric and anionic sensors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of Data and Material

All the written material is new not a copy.

Code Availability

Not Applicable.

References

  1. Tian W et al (2020) Novel anthraquinone compounds as anticancer agents and their potential mechanism. Future Med Chem 12(7):627–644

    CAS  PubMed  Google Scholar 

  2. Pham AN et al (2013) Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J Catal 301:54–64

    Article  CAS  Google Scholar 

  3. Malik EM, Müller CE (2016) Anthraquinones as pharmacological tools and drugs. Med Res Rev 36(4):705–748

    Article  CAS  PubMed  Google Scholar 

  4. Gessler N, Egorova A, Belozerskaya T (2013) Fungal anthraquinones. Appl Biochem Microbiol 49(2):85–99

    Article  CAS  Google Scholar 

  5. Pankewitz F et al (2007) Anthraquinones as defensive compounds in eggs of Galerucini leaf beetles: Biosynthesis by the beetles? Arch Insect Biochem Physiol: Publ Collab Entomol Soc Am 66(2):98–108

    Article  CAS  Google Scholar 

  6. Malik EM et al (2016) Ullmann reactions of 1-amino-4-bromoanthraquinones bearing various 2-substituents furnishing novel dyes. Dyes Pigm 131:33–40

    Article  CAS  Google Scholar 

  7. Caro Y et al (2012) Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Nat Prod Bioprospecting 2(5):174–193

    Article  CAS  Google Scholar 

  8. Kulik PH (2008) Van Nostrand's scientific encyclopedia. Wiley-Interscience

  9. Shaw DW (2009) Allergic contact dermatitis from carmine. Dermatitis 20(5):292–295

    Article  PubMed  Google Scholar 

  10. Dufossé L (2014) Anthraquinones, the Dr Jekyll and Mr Hyde of the food pigment family. Food Res Int 65:132–136

    Article  Google Scholar 

  11. Malik EM, Baqi Y, Müller CE (2015) Syntheses of 2-substituted 1-amino-4-bromoanthraquinones (bromaminic acid analogues)–precursors for dyes and drugs. Beilstein J Org Chem 11(1):2326–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Forti J et al (2007) Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone. J Electroanal Chem 601(1–2):63–67

    Article  CAS  Google Scholar 

  13. Uchimiya M, Stone AT (2009) Reversible redox chemistry of quinones: Impact on biogeochemical cycles. Chemosphere 77(4):451–458

    Article  CAS  PubMed  Google Scholar 

  14. Kazarian S (2000) Polymer processing with supercritical fluids. Polymer science series CC/C of vysokomolekuliarnye soedineniia 42(1):78–101

    Google Scholar 

  15. Montero GA et al (2000) Supercritical fluid technology in textile processing: an overview. Ind Eng Chem Res 39(12):4806–4812

    Article  CAS  Google Scholar 

  16. Miyazaki K, Tabata I, Hori T (2012) Relationship between colour fastness and colour strength of polypropylene fabrics dyed in supercritical carbon dioxide: effect of chemical structure in 1, 4-bis (alkylamino) anthraquinone dyestuffs on dyeing performance. Color Technol 128(1):60–67

    Article  CAS  Google Scholar 

  17. Guzel B, Akgerman A (2000) Mordant dyeing of wool by supercritical processing. J Supercrit Fluids 18(3):247–252

    Article  CAS  Google Scholar 

  18. Shinoda T, Tamura K (2003) Solubilities of CI Disperse Red 1 and CI Disperse Red 13 in supercritical carbon dioxide. Fluid Phase Equilib 213(1–2):115–123

    Article  CAS  Google Scholar 

  19. Torrisi A, Mellot-Draznieks C, Bell RG (2010) Impact of ligands on CO 2 adsorption in metal-organic frameworks: First principles study of the interaction of CO 2 with functionalized benzenes. II. Effect of polar and acidic substituents. J Chem Phys 132(4):044705

    Article  PubMed  Google Scholar 

  20. Tamura K, Alwi RS (2015) Solubility of anthraquinone derivatives in supercritical carbon dioxide. Dyes Pigm 113:351–356

    Article  CAS  Google Scholar 

  21. Imran S et al (2018) Effect of electrolytes on the solubility and solution thermodynamics of 1-amino-4-hydroxy-9, 10-anthraquinone, an analogue of anthracycline anticancer drugs, in aqueous ethanol media using theoretical and UV–Vis spectroscopic study. J Mol Liq 252:151–157

    Article  CAS  Google Scholar 

  22. Kadam S, Kanase V (2021) Laxative activity of Ethanolic extract of Capparis moonii W. fruit. Res J Pharm Technol 14(7):3528–3532

    Article  Google Scholar 

  23. Gorkom BV, Vries ED (1999) Anthranoid laxatives and their potential carcinogenic effects. Aliment Pharmacol Ther 13(4):443–452

    Article  PubMed  Google Scholar 

  24. Huang Q et al (2007) Anti-cancer properties of anthraquinones from rhubarb. Med Res Rev 27(5):609–630

    Article  CAS  PubMed  Google Scholar 

  25. Murdock K et al (1979) Antitumor agents. 1. 1, 4-Bis [(aminoalkyl) amino]-9, 10-anthracenediones. J Med Chem 22(9):1024–1030

    Article  CAS  PubMed  Google Scholar 

  26. Shrestha JP et al (2014) Synthesis and anticancer structure activity relationship investigation of cationic anthraquinone analogs. Eur J Med Chem 77:96–102

    Article  CAS  PubMed  Google Scholar 

  27. Shrestha JP et al (2015) A mode of action study of cationic anthraquinone analogs: A new class of highly potent anticancer agents. MedChemComm 6(11):2012–2022

    Article  CAS  Google Scholar 

  28. Khan K et al (2011) Development of anti-acne gel formulation of anthraquinones rich fraction from Rubia cordifolia (Rubiaceae). Int J Appl Res Nat Prod 4(4):28–36

    Google Scholar 

  29. Wuthi-udomlert M, Kupittayanant P, Gritsanapan W (2010) In vitro evaluation of antifungal activity of anthraquinone derivatives of Senna alata. J Health Res 24(3):117–122

    CAS  Google Scholar 

  30. Fosso MY et al (2012) Library synthesis and antibacterial investigation of cationic anthraquinone analogs. ACS Comb Sci 14(3):231–235

    Article  CAS  PubMed  Google Scholar 

  31. Gan K-H et al (2008) Antiplatelet effect and selective binding to cyclooxygenase by molecular docking analysis of 3-alkylaminopropoxy-9, 10-anthraquinone derivatives. Biol Pharm Bull 31(8):1547–1551

    Article  CAS  PubMed  Google Scholar 

  32. Seo EJ et al (2012) Chrysophanol-8-O-glucoside, an anthraquinone derivative in rhubarb, has antiplatelet and anticoagulant activities. J Pharmacol Sci 118(2):245–254

    Article  CAS  PubMed  Google Scholar 

  33. Baqi Y et al (2009) High-affinity, non-nucleotide-derived competitive antagonists of platelet P2Y12 receptors. J Med Chem 52(12):3784–3793

    Article  CAS  PubMed  Google Scholar 

  34. Jackson T, Verrier J, Kochanek P (2013) Anthraquinone-2-sulfonic acid (AQ2S) is a novel neurotherapeutic agent. Cell Death Dis 4(1):e451–e451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kingwell E et al (2010) Cardiotoxicity and other adverse events associated with mitoxantrone treatment for MS. Neurology 74(22):1822–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hussain H et al (2015) A fruitful decade from 2005 to 2014 for anthraquinone patents. Expert Opin Ther Pat 25(9):1053–1064

    Article  CAS  PubMed  Google Scholar 

  37. Pommier Y et al (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17(5):421–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Leteurtre F et al (1994) Saintopin, a dual inhibitor of DNA topoisomerases I and II, as a probe for drug-enzyme interactions. J Biol Chem 269(46):28702–28707

    Article  CAS  PubMed  Google Scholar 

  39. Taniguchi K et al (1996) Drug-induced down-regulation of topoisomerase I in human epidermoid cancer cells resistant to saintopin and camptothecins. Can Res 56(10):2348–2354

    CAS  Google Scholar 

  40. Wu C-C et al (2013) On the structural basis and design guidelines for type II topoisomerase-targeting anticancer drugs. Nucleic Acids Res 41(22):10630–10640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lown JW (1993) Anthracycline and anthraquinone anticancer agents: current status and recent developments. Pharmacol Ther 60(2):185–214

    Article  CAS  PubMed  Google Scholar 

  42. Gewirtz D (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57(7):727–741

    Article  CAS  PubMed  Google Scholar 

  43. Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65(2):157–170

    Article  CAS  PubMed  Google Scholar 

  44. Black SN et al (1992) Structure of 1-amino-4-hydroxy-2-phenoxy-9, 10-anthracenedione. Acta Crystallogr C 48(2):321–323

    Article  Google Scholar 

  45. Miyazaki K, Hirogaki T, Tabata I, Hori T (2022) The relationship between the substitution position of hydrophobic groups on near‐magenta anthraquinone dyestuffs and the dyeing performance for polypropylene fabric dyed in supercritical carbon dioxide. Color Technol 138(5):538–550

  46. Cao D et al (2022) Adsorption behavior of anthraquinones in deep eutectic solvent on polyester fiber and its application. Sustain Chem Pharm 27:100680

    Article  CAS  Google Scholar 

  47. Martorell M et al (2021) An update of anthraquinone derivatives emodin, diacerein, and catenarin in diabetes. Evid-Based Complement Alterna Med: eCAM 2021:1–13

  48. Goodman LS (1996) Goodman and Gilman's the pharmacological basis of therapeutics. Vol. 1549. McGraw-Hill New York

  49. Lim K-H et al (1997) Cellular uptake and antitumor activity of the new anthracycline analog DA-125 in human cancer cell lines. Cancer Chemother Pharmacol 40(1):23–30

    Article  CAS  PubMed  Google Scholar 

  50. Preobrazhenskaya MN et al (2006) Second generation drugs-derivatives of natural antitumor anthracycline antibiotics daunorubicin, doxorubicin and carminomycin. J Med Sci-Taipei 26(4):119

    Google Scholar 

  51. Hu F-Q et al (2009) Synthesis and antitumor activity of doxorubicin conjugated stearic acid-g-chitosan oligosaccharide polymeric micelles. Biomaterials 30(36):6955–6963

    Article  CAS  PubMed  Google Scholar 

  52. Das A et al (2016) Studies on the interaction of 2-amino-3-hydroxy-anthraquinone with surfactant micelles reveal its nucleation in human MDA-MB-231 breast adinocarcinoma cells. RSC Adv 6(34):28200–28212

    Article  CAS  Google Scholar 

  53. Mondal P et al (2015) 1-Amino-4-hydroxy-9, 10-anthraquinone–An analogue of anthracycline anticancer drugs, interacts with DNA and induces apoptosis in human MDA-MB-231 breast adinocarcinoma cells: Evaluation of structure–activity relationship using computational, spectroscopic and biochemical studies. Biochem Biophys Rep 4:312–323

    PubMed  PubMed Central  Google Scholar 

  54. Roy S et al (2015) Spectroscopic, computational and electrochemical studies on the formation of the copper complex of 1-amino-4-hydroxy-9, 10-anthraquinone and effect of it on superoxide formation by NADH dehydrogenase. Dalton Trans 44(12):5428–5440

    Article  CAS  PubMed  Google Scholar 

  55. Roy S, Guin PS (2014) Solvation of 1-amino-4-Hydroxy-9, 10-anthraquinone governs its electrochemical behavior in non-aqueous and aqueous media: A cyclic voltammetry study. J Electrochem Soc 162(3):H124

    Article  Google Scholar 

  56. Roy S, Guin PS (2015) Investigation on the interaction of 1-amino-4-hydroxy-9, 10-anthraquinone with calf thymus DNA and CTAB micelles. J Mol Liq 211:846–853

    Article  CAS  Google Scholar 

  57. Guin PS, Das S, Mandal P (2009) Studies on the formation of a complex of Cu (II) with sodium 1, 4-dihydroxy-9, 10-anthraquinone-2-sulphonate–An analogue of the core unit of anthracycline anticancer drugs and its interaction with calf thymus DNA. J Inorg Biochem 103(12):1702–1710

    Article  CAS  PubMed  Google Scholar 

  58. Guin PS, Mandal PC, Das S (2012) The Binding of a Hydroxy-9, 10-anthraquinone CuII Complex to Calf Thymus DNA: Electrochemistry and UV/Vis Spectroscopy. ChemPlusChem 77(5):361–369

    Article  CAS  Google Scholar 

  59. Rossi S et al (2010) Anthraquinones danthron and quinizarin exert antiproliferative and antimetastatic activity on murine B16–F10 melanoma cells. Anticancer Res 30(2):445–449

    CAS  PubMed  Google Scholar 

  60. Das P et al (2014) Synthesis, crystal structure, DNA interaction and in vitro anticancer activity of a Cu (II) complex of purpurin: dual poison for human DNA topoisomerase I and II. RSC Adv 4(103):59344–59357

    Article  CAS  Google Scholar 

  61. Das P et al (2015) Influence of ionic strength on the interaction of THA and its Cu (II) complex with DNA helps to explain studies on various breast cancer cells. RSC Adv 5(89):73099–73111

    Article  CAS  Google Scholar 

  62. Das P et al (2011) Cyclic voltammetric studies of 1, 2, 4-trihydroxy-9, 10-anthraquinone, its interaction with calf thymus DNA and anti-leukemic activity on MOLT-4 cell lines: a comparison with anthracycline anticancer drugs. J Phys Org Chem 24(9):774–785

    Article  CAS  Google Scholar 

  63. Nakayama T, Okumura N, Uno B (2020) Complementary Effect of Intra-and Intermolecular Hydrogen Bonds on Electron Transfer in β-Hydroxy-Anthraquinone Derivatives. J Phys Chem B 124(5):848–860

    Article  CAS  PubMed  Google Scholar 

  64. Mukherjee Chatterjee S et al (2018) Activity of CoII–Quinalizarin: A novel analogue of anthracycline-based anticancer agents targets human DNA topoisomerase, whereas quinalizarin itself acts via formation of semiquinone on acute lymphoblastic leukemia MOLT-4 and HCT 116 cells. ACS Omega 3(8):10255–10266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barasch D et al (1999) Novel anthraquinone derivatives with redox-active functional groups capable of producing free radicals by metabolism: are free radicals essential for cytotoxicity? Eur J Med Chem 34(7–8):597–615

    Article  CAS  PubMed  Google Scholar 

  66. Mandal B, Mondal HK, Das S (2019) In situ reactivity of electrochemically generated semiquinone on Emodin and its CuII/MnII complexes with pyrimidine based nucleic acid bases and calf thymus DNA: Insight into free radical induced cytotoxicity of anthracyclines. Biochem Biophys Res Commun 515(3):505–509

    Article  CAS  PubMed  Google Scholar 

  67. Bartoszek-Pączkowska A (2002) Metabolic activation of adriamycin by NADPH-cytochrome P450 reductase; overview of its biological and biochemical effects. Acta Biochim Pol 49:323–331

    Article  Google Scholar 

  68. Kumbhar A, Padhye S, Ross D (1996) Cytotoxic properties of iron-hydroxynaphthoquinone complexes in rat hepatocytes. Biometals 9(3):235–240

    Article  CAS  PubMed  Google Scholar 

  69. Banerjee S et al (2021) A Co (III) Complex of 1-Amino-4-hydroxy-9, 10-anthraquinone Exhibits Apoptotic Action against MCF-7 Human Breast Cancer Cells. ACS Omega 7(1):1428–1436

    Article  PubMed  PubMed Central  Google Scholar 

  70. Stasevych M et al (2021) Amino-and diamino-9, 10-anthracenedione derivatives: Biofocus and applied advantages-a mini-review. Biointerface Res Appl Chem 11(6):14103–14114

    Article  CAS  Google Scholar 

  71. Wacławek S et al (2021) Selective spectrophotometric determination of peroxydisulfate based on a by-product formation. Sens Actuators B Chem 344:130214

    Article  Google Scholar 

  72. Waring MJ (1981) DNA modification and cancer. Annu Rev Biochem 50(1):159–192

    Article  CAS  PubMed  Google Scholar 

  73. Enache M, Anghelache I, Volanschi E (2010) Coupled spectral and electrochemical evaluation of the anticancer drug mitoxantrone–sodium dodecyl sulfate interaction. Int J Pharm 390(2):100–106

    Article  CAS  PubMed  Google Scholar 

  74. Ramotowska S et al (2019) Hydrogen bonding and protonation effects in amino acids’ anthraquinone derivatives-Spectroscopic and electrochemical studies. Spectrochim Acta Part A Mol Biomol Spectrosc 222:117226

    Article  CAS  Google Scholar 

  75. Sharma BK et al (2017) Synthesis, Spectral, Electrochemical and Theoretical Investigation of indolo [2, 3-b] quinoxaline dyes derived from Anthraquinone for n–type materials. J Chem Sci 129:483–494

    Article  CAS  Google Scholar 

  76. Chang JB et al (2012) Dichroic and spectral properties of anthraquinone-based azo dyes for PVA polarizing film. Dyes Pigm 92(1):737–744

    Article  CAS  Google Scholar 

  77. Zhang J et al (2016) Dihydroxyanthraquinone derivatives: natural dyes as blue-light-sensitive versatile photoinitiators of photopolymerization. Polym Chem 7(47):7316–7324

    Article  CAS  Google Scholar 

  78. Xiao P et al (2013) Cationic and thiol–ene photopolymerization upon red lights using anthraquinone derivatives as photoinitiators. Macromolecules 46(17):6744–6750

    Article  CAS  Google Scholar 

  79. Zhang J et al (2018) Disubstituted aminoanthraquinone-based multicolor photoinitiators: photoinitiation mechanism and ability of cationic polymerization under blue, green, yellow, and red LEDs. Macromolecules 51(20):8165–8173

    Article  CAS  Google Scholar 

  80. Kaur K, Kumar S (2010) 1-Aminoanthracene-9, 10-dione based chromogenic molecular sensors: effect of nature and number of nitrogen atoms on metal ion sensing behavior. Tetrahedron 66(34):6990–7000

    Article  CAS  Google Scholar 

  81. Ranyuk E et al (2011) Rational design of aminoanthraquinones for colorimetric detection of heavy metal ions in aqueous solution. Dalton Trans 40(40):10491–10502

    Article  CAS  PubMed  Google Scholar 

  82. Kaur N, Kumar S (2012) Aminoanthraquinone-based chemosensors: colorimetric molecular logic mimicking molecular trafficking and a set–reset memorized device. Dalton Trans 41(17):5217–5224

    Article  CAS  PubMed  Google Scholar 

  83. Jali BR (2021) A mini-review: quinones and their derivatives for selective and specific detection of specific cations. Biointerface Res Appl Chem 11:11679–11699

    Google Scholar 

  84. Kaur N (2022) Anthraquinone appended chemosensors for fluorescence monitoring of anions and/or metal ions. Inorganica Chimica Acta 120917

  85. Cho EJ et al (2006) Naked eye fluoride ion chemosensors with anthraquinone derivatives. Bull-Korean Chem Soc 27(12):1967

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept and design of this article is collective contribution of all authors. They all read and approve the final manuscript of this research article. Bushra Tariq along with Sadia Asim plays a vital role in collecting data regarding the spectroscopic and voltammetric properties of Anthraquinone and its derivatives and their applications as sensors. Fluorescent applications of Anthraquinone derivatives in imaging purpose was collected by Abida Kausar and Asim Mansha. The first draf of manuscript was written by Bushra Tariq which was later refined by Sadia Asim, Abida Kausar and Asim Mansha.

Corresponding author

Correspondence to Sadia Asim.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Yes, i got permission.

Consent for Publication

Yes, u can publish it.

Conflict of Interest

The review article entitled “Spectroscopic and Voltammetric Analysis of Anthraquinone Derivatives as Fluorescence Sensors”. All the authors involved in the write up of this article do not have any conflict of Interest. The complete details of authors are given as under.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, B., Mansha, A., Asim, S. et al. Effect of Substituents on Solubility, Medicinal, Absorption, Emission and Cationic/Anionic Detection Properties of Anthraquinone Derivatives. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03410-0

Keywords

Navigation