Skip to main content
Log in

An Introductory Overview on Applications of Pyrazoles as Transition Metal Chemosensors

  • REVIEW
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Utility of pyrazoles and their derivatives in constructing ordered porous materials with physicochemical characteristics such as chemosensors has undoubtedly created much interest in developing newer frameworks. A variety of pyrazole based chemosensors are known for their remarkable photophysical, pH sensitivity, solvatochromic, ion detection, high quantum yields and nonlinear optical behavior. Many of the transition metals have shown beneficial biological effects in biological systems. There is always a need of continuous monitoring to maintain an adequate range of all and specifically for the toxic ones like mercury. Pyrazoline nanoparticle probes have been reported for sensing/detection of Hg2+ions. Pyridinyl pyrazoline and benzimidazolyl pyrazole derived sensors are more selective and sensitive towards Zn2+and Fe3+ ions respectively. Pyrazole derived metal organic frameworks (MOF’s) have been reported for environmental monitoring and biological imaging. Keeping in view of the enormous synthetic and biological importance of pyrazoles, herein, we are presenting an overview on applications of pyrazoles in transition metal chemosensors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Fig. 2
Scheme 4
Scheme 5
Scheme 6
Fig. 3
Scheme 7
Fig. 4
Scheme 8
Fig. 5
Scheme 9
Scheme 10
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 11
Fig. 12
Fig. 13
Scheme 12

Similar content being viewed by others

Availability of Data and Materials

No data has been used.

Abbreviations

SARS-COV-2RNA :

Severe acute respiratory syndrome coronavirus-2 ribose nucleic acid

BTP:

Bis (2-(2’-benzothienyl)-pyridinato-N, C3’) iridium (acetylacetonate))

Pro4:

Tetraproline

PMS:

Precursor molecular sensor

EWC:

Early fire warning component

TD-DFT:

Time-dependent density-functional theory

TEM:

Transmission electron microscope

TMBPz:

Tetramethyl bis(pyrazole)

L:

Bis(pyrazole)-bis(acetate)

H2BPEFB:

1, 4-Bis (1H-pyrazol-4-ylethynyl)—2- fluorobenzene

HeLa:

Henrietta Lacks

EDTA:

Ethylene diamine tetra acetic acid

HRMS-ESI:

High resolution mass spectra-electrospray ionization

OTC:

Oxytetracycline

DFT:

Density functional theory

BIS:

Bis(acrylamide)

DEAP:

2, 2-Diethoxyacetophenone

QDs:

Quantum Dots

CDs:

Carbon Dots

DCDs:

Dual Emission Carbon Dots

References

  1. Zhou Y, Yoon J (2012) Chem Soc Rev 41:52–67. https://doi.org/10.1039/C1CS15159B

    Article  CAS  PubMed  Google Scholar 

  2. Que EL, Domaille DW, Chang CJ (2008) Chem Rev 108:1517–1549. https://doi.org/10.1021/cr078203u

    Article  CAS  PubMed  Google Scholar 

  3. Elanchezhian VS, Kandaswamy M (2010) Inorg. Chem Comm 13:1109–1113. https://doi.org/10.1016/j.inoche.2010.06.012

    Article  CAS  Google Scholar 

  4. Nelson M, Muniyasamy H, Ongi P, Balakrishnan S, Sepperumal M, Ayyanar S, Jegathalaprathaban R (2022) Results Chem 4:100501. https://doi.org/10.1016/j.rechem.2022.100501

    Article  CAS  Google Scholar 

  5. Yang G, Meng X, Wang Z, Fang S, Wang F, Wang L, Duan H, Hao A (2018). New J Chem. https://doi.org/10.1039/C8NJ02541J

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tian Q, Chen S, Yu J, Zhang M, Gao N, Yang X, Wang C, Duan X, Zang L (2022) J Mater Chem C 10:10171–10195. https://doi.org/10.1039/D2TC01369J

    Article  CAS  Google Scholar 

  7. Goshisht MK, Tripathi N (2021) J Mater Chem C 9:9820–9850. https://doi.org/10.1039/D1TC01990B

    Article  CAS  Google Scholar 

  8. Malik LA, Bashir A, Qureashi A, Pandith AH (2019) Environ Chem Lett 17:1495–1521. https://doi.org/10.1007/s10311-019-00891-z

    Article  CAS  Google Scholar 

  9. Jian C, Seitz WR (1990) Anal Chim Acta 237:265–271. https://doi.org/10.1016/S0003-2670(00)83928-8

    Article  CAS  Google Scholar 

  10. Zhang X, Qiu X, Lu R, Zhou H, Xue P, Liu X (2010) Talanta 82:1943–1949. https://doi.org/10.1016/j.talanta.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  11. Fu HR, Yan LB, Wu NT, Ma LF, Zang SQ (2018) J Mater Chem A 6:9183–9191. https://doi.org/10.1039/C8TA02857E

    Article  CAS  Google Scholar 

  12. Li M, Qian Z, Shi B, Medlicott J, East A (2018) Postharvest Biol Technol 145:183–192. https://doi.org/10.1016/j.postharvbio.2018.07.009

    Article  Google Scholar 

  13. Yifan D (2020) ChemBioChem 21:3492–3494. https://doi.org/10.1002/2Fcbic.202000518

    Article  Google Scholar 

  14. Ricotta V, Yu Y, Clayton N, Chuang YC, Wang Y, Mueller S, Levon K, Simon M, Rafailovich M (2019) Analyst 144:2266–4280. https://doi.org/10.1039/C9AN00580C

    Article  Google Scholar 

  15. Orrego-Hernandez J, Portilla J (2017) J Org Chem 82:13376–13385. https://doi.org/10.1021/acs.joc.7b02460

    Article  CAS  PubMed  Google Scholar 

  16. Tigreros A, Portilla J (2020) RSC Adv 10:19693–19712. https://doi.org/10.1039/D0RA02394A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tigreros A, Portilla J (2021) Curr Chin Sci 1:197–206. https://doi.org/10.2174/2210298101999201208211116

    Article  CAS  Google Scholar 

  18. Elguero J (1996) In Comprehensive Heterocyclic Chemistry,’ Vol. 3 ed. A. R. Katritzky, C. W. Rees, E. F. V. Scriven, Pergamon Press, New York 1–75

  19. Pinto DJP, Owat MJ, Wang S, Fevig JM, Quan ML, Amparo E, Cacciola J, Rossi KA, Alexander RS, Smallwood AM, Luettgen JM, Liang L, Aungst BJ, Wright MR, Knabb RM, Wong PC, Wexler RR, Lam PYS (2001) J Med Chem 44:566. https://doi.org/10.1021/jm000409z

    Article  CAS  PubMed  Google Scholar 

  20. Parshad M, Verma V, Kumar D, Narasimhan B, Kour S, Singh S, Sangwan PL (2015) J Chem Sci (Bangalore) 127:413–423. https://doi.org/10.1007/s12039-015-0791-4

    Article  CAS  Google Scholar 

  21. Fustero S, Sanchez-Rosello M, Barrio P, Fuentes AS (2011) Chem Rev 111:6984–7034. https://doi.org/10.1021/cr2000459

    Article  CAS  PubMed  Google Scholar 

  22. Ganguly S, Jacob SK (2017) Mini Rev Med Chem 17:959–983. https://doi.org/10.2174/1389557516666151120115302

    Article  CAS  PubMed  Google Scholar 

  23. Bhatt BA, Dhar KL, Puri SC, Saxena AK, Shanmugavel M, Qazi GN (2005) Bioorg Med Chem Lett 15:3177–3180. https://doi.org/10.1016/j.bmcl.2005.03.121

    Article  CAS  Google Scholar 

  24. Singh R, Kaur R, Ahlawat P, Kaushik P, Singh K (2021) Org Prep Proced Int 53:317–351. https://doi.org/10.1080/00304948.2021.1904750

    Article  CAS  Google Scholar 

  25. Castillo JC, Tigreros A, Portilla J (2018) J Org Chem 83:10887–10897. https://doi.org/10.1021/acs.joc.8b01571

    Article  CAS  PubMed  Google Scholar 

  26. Rawat P, Singh RN, Sahu S, Niranjan P, Rani H, Saxena R, Ahmad S (2016) ChemistrySelect 1:4008–4015. https://doi.org/10.1002/slct.201600826

    Article  CAS  Google Scholar 

  27. Baranoff E, Bolink HJ, Constable EC, Delgado M, Häussinger D, Housecroft CE, Nazeeruddin MK, Neuburger M, Ortí E, Schneider GE, Tordera D, Walliser RM, Zampese JA (2013) Dalton Trans 42:1073–1087. https://doi.org/10.1039/c2dt32160b

    Article  CAS  PubMed  Google Scholar 

  28. Pedrini A, Maspero A, Bracco S, Comotti A, Galli S, Marchio L, Nardo L, Penoni A, Scapinello L, Sozzani P, Vesco G, Mella M (2020) New J Chem 44:6443–6455. https://doi.org/10.1039/D0NJ00259C

    Article  CAS  Google Scholar 

  29. Wang P, Komatsuzaki NO, Himeda Y, Sugihara H, Arakawa H, Kasuga K (2001) Tetrahedron Lett 42:9199–9201. https://doi.org/10.1016/S0040-4039(01)01970-0

    Article  CAS  Google Scholar 

  30. Zhang TT, Wang FW, Li MM, Liua JT, Miao JY, Zhaoa BX (2013) Sens Actuators B Chem 186:755–760. https://doi.org/10.1016/j.snb.2013.06.085

    Article  CAS  Google Scholar 

  31. Ciupa A, Mahon MF, De Bank PA, Caggiano L (2012) Org Biomol Chem 10:8753–8757. https://doi.org/10.1039/C2OB26608C

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Lao S, Ding W, Zhang Z, Liu S (2019) Actuators B Chemical 284:186–192. https://doi.org/10.1016/j.snb.2018.12.139

    Article  CAS  Google Scholar 

  33. Song Q, Ma Y, Wang X, Tang T, Song Y, Ma Y, Xu G, Wei F, Cen Y, Hu Q (2018) J Colloid Interface Sci 516:522–528. https://doi.org/10.1016/j.jcis.2018.01.074

    Article  CAS  PubMed  Google Scholar 

  34. Mingxi Y, Qiuling T, Yang M, Junjun L, Tanglue F, Xiaohuan Z, Shoujun Z, Weixian Y, Bai Y (2018) Langmuir 34:7767–7775. https://doi.org/10.1021/acs.langmuir.8b00947

    Article  CAS  Google Scholar 

  35. Wang SQ, Liu SY, Wang HY, Zheng XX, Yuan X, Liu YZ, Miao JY, Zhao BX (2014) J Fluoresc 24:657–663. https://doi.org/10.1007/s10895-013-1339-y

    Article  CAS  PubMed  Google Scholar 

  36. Gond S, Yadav P, Singh A, Garai S, Shekher A, Gupta SC, Singh VP (2023) Org Biomol Chem 21:4482–4490. https://doi.org/10.1039/D3OB00434A

    Article  CAS  PubMed  Google Scholar 

  37. Nayak N, Prasad KS, Pillai RR, Armakovic S, Armakovic SJ (2018) RSC Adv 8:18023–18029. https://doi.org/10.1039/C8RA02905A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moura NMM, Nunez C, Santos SM, Faustino MAF, Cavaleiro JAS, Neves MGPMS, Capelo JL, Lodeiro C (2014) Inorg Chem 53:6149–6158. https://doi.org/10.1021/ic500634y

    Article  CAS  PubMed  Google Scholar 

  39. Amoah C, Obuah C, Ainooson MK, Hamenu L, Oppong A, Muller A (2023) Tetrahedron 133276. https://doi.org/10.1016/j.tet.2023.133276

  40. Ganesan JS, Sepperumal M, Ashokkumar B, Ayyanar S (2020) Spectrochim Acta A Mol Biomol Spectrosc 230:117993. https://doi.org/10.1016/j.saa.2019.117993

    Article  CAS  PubMed  Google Scholar 

  41. Madhu P, Sivakumar P (2019) J Photochem Photobiol Chem 371:341–348. https://doi.org/10.1016/j.jphotochem.2018.11.033

    Article  CAS  Google Scholar 

  42. Mir N, Heidari A, Beyzaei H, Rigi SM, Karimi P (2017) Chem Eng J 327:648–655. https://doi.org/10.1016/j.cej.2017.06.062

    Article  CAS  Google Scholar 

  43. Kandasamy K, Ganesabaskaran S, Pachamuthu MP, Ramanathan A (2015) Spectrochim Acta Part A Mol Biomol Spectrosc 148:184–188. https://doi.org/10.1016/j.saa.2015.04.005

    Article  CAS  Google Scholar 

  44. Ismail AH, Zaidi BHA, Abd AN, Habubi NF (2020) Chem Pap 74:2069–2078. https://doi.org/10.1007/s11696-019-01007-1

    Article  CAS  Google Scholar 

  45. Kataria R, Sethuramana K, Vashisht D, Vashisht A, Mehta SK, Gupta A (2019) Microchem J 148:299–305. https://doi.org/10.1016/j.microc.2019.04.068

    Article  CAS  Google Scholar 

  46. Wang K, Lv XL, Feng D, Li J, Chen S, Sun J, Song L, Xie Y, Li JR, Zhou HC (2016) J Am Chem Soc 138:914–919. https://doi.org/10.1021/jacs.5b10881

    Article  CAS  PubMed  Google Scholar 

  47. Huang MJ, Deng X, Xian WR, Liao WM, He J (2019) Inorg Chem Commun 101:121–124. https://doi.org/10.1016/j.inoche.2019.01.025

    Article  CAS  Google Scholar 

  48. Oulmidi A, Radi S, Miras HN, Adarsh NN, Garcia Y (2021) Sustainability 13:288. https://doi.org/10.3390/su13010288

    Article  CAS  Google Scholar 

  49. Zhang X, Xing N, Bai F, Wan L, Shan H, Hou Y, Xing Y, Shi Z (2013) CrystEngComm 15:9135–9147. https://doi.org/10.1039/C3CE41213J

    Article  CAS  Google Scholar 

  50. Ziarani GM, Javadi F, Mohajer F, Anafcheh M, Badiei A, Ghasemi JB (2022) Mater Chem Phys 275:125285. https://doi.org/10.1016/j.matchemphys.2021.125285

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We highly acknowledges Guru Jambheshwar University of Science and Technology, Hisar.

Author information

Authors and Affiliations

Authors

Contributions

Dr Mahavir Parshad had the idea for the article and performed the literature search and data analysis, and Dr Devinder Kumar and Dr Vikas Verma drafted and/or critically revised the work.

Corresponding author

Correspondence to Mahavir Parshad.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parshad, M., Kumar, D. & Verma, V. An Introductory Overview on Applications of Pyrazoles as Transition Metal Chemosensors. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03402-0

Keywords

Navigation