Skip to main content
Log in

A Novel Naphthylidene-diimine Chemosensor for Selective Colorimetric and Fluorometric Detection of Al3+ and CN Ions

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A naphthylidene-diimine L2 was newly designed, and its structure was identified by elemental analysis and spectroscopic methods. The effect of temperature, acid–base and light on enol–keto tautomerism in this Schiff base was evaluated by colorimetry, UV–Vis and fluorescence spectroscopy. Under irradiation 365 nm, L2 emitted yellow, orange and strong green emission in pure, basic and aqueous DMSO media (v/v, 1/1), respectively. Its ionochromic behavior against various cations (Fe3+, Al3+, Cr3+, Cu2+, Co2+, Ni2+, Zn2+, Cd2+, Pb2+, Ba2+ and Ag+) and anions (F, Cl, CH3COO, SO32–, S2O32−, HSO4, H2PO4, NO3, CN, and OH) was investigated in aqueous DMSO media (v/v, 1/1) by UV–Vis and fluorescence experiments. Dark yellow color of L2 changed to colorless for Fe3+, Cr3+ and HSO4 ions, and turned to light yellow for Al3+ and Cu2+ ions, and to orange for CN and OH ions. According to UV–Vis data, the chemosensor displayed selective recognition towards Fe3+, Al3+, Cu2+, HSO4, CN and OH with a 1:1 stoichiometric ratio. At the excitation wavelength of 365 nm, L2 gave strong yellowish white emission (λem = 445 and 539 nm) in the presence of Al3+, and the intensity increased about 12.5 times. On the other hand, the chemosensor displayed one emission band at 452 nm and 450 nm in the presence of CN and OH with 1.9 fold and 2.3 fold fluorescence enhancement, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 4
Fig. 11
Fig. 12
Scheme 5
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of Data and Materials

Additional documents are included in supplementary material file. Electronic Supplementary Material associated with this article can be found in the online version of this paper (DOI: xxxxxxxxxx).

References

  1. More MS, Joshi PG, Mishra YK, Khanna PK (2019) Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: a review. Mater Today Chem 14:100195. https://doi.org/10.1016/j.mtchem.2019.100195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharbati MT, Rad MNS, Behrouz S, Gharavi A, Emami F (2011) Near infrared organic light-emitting diodes based on acceptor–donor–acceptor (ADA) using novel conjugated isatin Schiff bases. J Lumin 131:553–558. https://doi.org/10.1016/j.jlumin.2010.10.016

    Article  CAS  Google Scholar 

  3. Das AK, Goswami S (2017) 2-Hydroxy-1-naphthaldehyde: a versatile building block for the development of sensors in supramolecular chemistry and molecular recognition. Sens Actuat B-Chem 245:1062–1125. https://doi.org/10.1016/j.snb.2017.01.068

    Article  CAS  Google Scholar 

  4. Shu J, Ni T, Liu X, Xu B, Liu L, Chu W, Zhang K, Jiang W (2021) Mechanochromism, thermochromism, protonation effect and discrimination of CHCl3 from organic solvents in a Et2N-substituted Salicylaldehyde Schiff base. Dye Pigment 195:109708. https://doi.org/10.1016/j.dyepig.2021.109708

    Article  CAS  Google Scholar 

  5. Liu JJ, Fu JJ, Shen X, Liu T, Cheng FX (2022) The effect of dicarboxylic acid isomer on the photochromism of naphthalenediimide-based metal-organic frameworks. J Mol Struct 1265:133346. https://doi.org/10.1016/j.molstruc.2022.133346

    Article  CAS  Google Scholar 

  6. Özdemir Güngör Ö (2017) Intramolecular Proton transfer equilibrium in salicylidene- and naphthalene-based Tetraimine Schiff Bases. Gazi U J Sci 30:191–214

    Google Scholar 

  7. Chaihan K, Semakul N, Promarak V, Bui TT, Kungwan N, Goubard F (2022) Tunable far-red fluorescence utilizing π-extension and substitution on the excited state intramolecular proton transfer (ESIPT) of naphthalene-based Schiff bases: a combined experimental and theoretical study. J Photochem Photobiol A 431:114047. https://doi.org/10.1016/j.jphotochem.2022.114047

    Article  CAS  Google Scholar 

  8. Mendecki L, Granados-Focil S, Jendrlin M, Mold M, Radu A (2020) Self-plasticized, lumogallion-based fluorescent optical sensor for the determination of aluminium(III) with ultra-low detection limits. Anal Chim Acta 1101:141–148. https://doi.org/10.1016/j.aca.2019.12.021

    Article  CAS  PubMed  Google Scholar 

  9. Qin JC, Cheng XY, Fang R, Wang MF, Yang ZY, Li TR, Li Y (2016) Two Schiff-base fluorescent sensors for selective sensing of aluminum(III): experimental and computational studies. Spectrochim Acta A 152:352–357. https://doi.org/10.1016/j.saa.2015.07.095

    Article  CAS  Google Scholar 

  10. Hu T, Wang L, Li J, Zhao Y, Cheng J, Li W, Chang Z, Sun C (2021) A new fluorescent sensor L based on fluorene-naphthalene Schiff base for recognition of Al3+ and Cr3+. Inorg Chim Acta 524:120421. https://doi.org/10.1016/j.ica.2021.120421

    Article  CAS  Google Scholar 

  11. Suganya S, Ravindran E, Mahato MK, Prasad E (2019) Orange emitting fluorescence probe for the selective detection of cyanide ion in solution and solid states. Sens Actuat B-Chem 291:426–432. https://doi.org/10.1016/j.snb.2019.04.066

    Article  CAS  Google Scholar 

  12. Chakraborty S, Paul S, Roy P, Rayalu S (2021) Detection of cyanide ion by chemosensing and fluorosensing technology. Inorg Chem Comm 128:108562. https://doi.org/10.1016/j.inoche.2021.108562

    Article  CAS  Google Scholar 

  13. Sidqi ME, Abdel Aziz AA, Abolehasan AE, Sayed MA (2022) Photochemical processing potential of a novel Schiff base as a fluorescent probe for selective monitoring of Al3+ ions and bioimaging in human cervical cancer HeLa cells. J Photochem Photobiol A 424:113616. https://doi.org/10.1016/j.jphotochem.2021.113616

    Article  CAS  Google Scholar 

  14. Guo X, Guo C, Xing Y, Liu Y, Wei K, Kang M, Yang X, Pei M, Zhang G (2022) A novel Schiff base sensor through “off-on-off” fluorescence behavior for sequentially monitoring Al3+ and Cu2+. J Photochem Photobiol A 430:113990. https://doi.org/10.1016/j.jphotochem.2022.113990

    Article  CAS  Google Scholar 

  15. Pundi A, Chen J, Chang CJ, Hsieh SR, Lee MC, Chou CH, Way TD (2021) Naked-eye colorimetric and turn-on fluorescent Schiff base sensor for cyanide and aluminum(III) detection in food samples and cell imaging applications. Spectrochim Acta A 262:120139. https://doi.org/10.1016/j.saa.2021.120139

    Article  CAS  Google Scholar 

  16. Yilmaz B, Keskinates M, Aydin Z, Bayrakci M (2022) A highly selective optical sensor for the detection of cyanide ions in aqueous solution and living cells. J Photochem Photobiol A 424:113651. https://doi.org/10.1016/j.jphotochem.2021.113651

    Article  CAS  Google Scholar 

  17. Wang DF, Ke YC, Guo HX, Chen J, Weng W (2014) A novel highly selective colorimetric sensor for aluminum(III) ion using Schiff base derivative. Spectrochim Acta A 122:268–272. https://doi.org/10.1016/j.saa.2013.11.063

    Article  CAS  Google Scholar 

  18. Shoora SK, Jain AK, Gupta VK (2015) A simple Schiff base based novel optical probe for aluminium(III) ions. Sens Actuat B-Chem 216:86–104. https://doi.org/10.1016/j.snb.2015.04.038

    Article  CAS  Google Scholar 

  19. Prakash O, Verma RS, Saini RK (1997) Tetrahedron Lett 38:2621

    Article  Google Scholar 

  20. Kumar R, Nair RR, Dhiman SS, Sharma J, Prakash O (2010) Iodine(III)-mediated synthesis of some 2-aryl/ hetarylbenzoxazoles as antibacterial/antifungal agents. Med Chem Res 19:541–550. https://doi.org/10.1007/s00044-009-9211-y

    Article  CAS  Google Scholar 

  21. Ozdemir O (2019) Synthesis of new luminescent bis-azo-linkage Schiff bases containing aminophenol and its derivative. Part I: studying of their tautomeric, acidochromic, thermochromic, ionochromic, and photolüminesence properties. J Photochem Photobiol A 380:111868. https://doi.org/10.1016/j.jphotochem.2019.111868

    Article  CAS  Google Scholar 

  22. Minkin VI, Tsukanov AV, Dubonosov AD, Bren VA (2011) Tautomeric Schiff bases: Iono-, solvato-, thermo- and photochromism. J Mol Struct 998:179–191. https://doi.org/10.1016/j.molstruc.2011.05.029

    Article  CAS  Google Scholar 

  23. Özdemir Ö (2019) Synthesis and characterization of a new diimine Schiff base and its Cu2+ and Fe3+ complexes: investigation of their photoluminescence, conductance, spectrophotometric and sensor behaviors. J Mol Struct 1179:376–389. https://doi.org/10.1016/j.molstruc.2018.11.023

    Article  CAS  Google Scholar 

  24. Behura R, Dash PP, Mohanty P, Behera S, Mohanty M, Dinda R, Behera SK, Barick AK, Jali BR (2022) A Schiff base luminescent chemosensor for selective detection of Zn2+ in aqueous medium. J Mol Struct 1264:133310. https://doi.org/10.1016/j.molstruc.2022.133310

    Article  CAS  Google Scholar 

  25. Özdemir Ö (2021) A new 2-hydroxynaphthalene based Schiff base receptor for detection of Cu2+, Fe3+, HSO4, CN ions and D–amino acids in aqueous DMSO solution. J Mol Struct 1240:130532. https://doi.org/10.1016/j.molstruc.2021.130532

    Article  CAS  Google Scholar 

  26. Güngör Ö, Gürkan P (2019) Potentiometric and antimicrobial studies on the asymmetric Schiff bases and their binuclear ni(II) and Fe(III) complexes; synthesis and characterization of the complexes. Arab J Chem 12:2244–2256. https://doi.org/10.1016/j.arabjc.2015.02.009

    Article  CAS  Google Scholar 

  27. Özdemir Ö (2018) Studies on phenol-keto tautomerism, metal ion binding, and free radical scavenging properties of newly synthesized naphthalene-based tetraimine Schiff base. J BAUN Inst Sci Technol 20:109–123. https://doi.org/10.25092/baunfbed.412405

    Article  Google Scholar 

  28. Gupta VK, Mergu N, Kumawat LK (2016) A new multifunctional rhodamine-derived probe for colorimetric sensing of Cu(II) and Al(III) and fluorometric sensing of Fe(III) in aqueous media. Sens Actuat B-Chem 223:101–113. https://doi.org/10.1016/j.snb.2015.09.060

    Article  CAS  Google Scholar 

  29. Aydın Z, Keleş M (2017) Highly selective Schiff base derivatives for colorimetric detection of Al3+. Turk J Chem 41:89–98. https://doi.org/10.3906/kim-1603-127

    Article  CAS  Google Scholar 

  30. El-Kashef HS, Abdel-Hamide R, Mahmoud MR, Hamed MM (1981) Medium effect on acidity constants of some 2-styryl-4-phenylthiazole ethiodide derivatives. Can J Chem 59:731–736

    Article  CAS  Google Scholar 

  31. Musikavanhu B, Zhang Y, Zhu D, Xue Z, Yuan R, Wang S, Zhao L (2022) Turn-off detection of cr(III) with chelation enhanced fluorescence quenching effect by a naphthyl hydrazone Shiff base chemosensor. Spectrochim Acta A 281:121599. https://doi.org/10.1016/j.saa.2022.121599

    Article  CAS  Google Scholar 

  32. Özdemir Ö (2020) Bis-azo-linkage Schiff bases–Part(II): synthesis, characterization, photoluminescence and DPPH radical scavenging properties of their novel luminescent mononuclear zn(II) complexes. J Photochem Photobiol A 392:112356. https://doi.org/10.1016/j.jphotochem.2020.112356

    Article  CAS  Google Scholar 

  33. Lei X, Zou Y, Liang Q, Xu W, Lao S, Yang B, Li L, Yang L, Liu H, Ma LJ (2022) An ultrasensitive 4-(Diethylamino) salicylaldehyd-based fluorescence enhancement probe for the detection of Al3+ in aqueous solutions and its application in cells. J Photochem Photobiol A 428:113854. https://doi.org/10.1016/j.jphotochem.2022.113854

    Article  CAS  Google Scholar 

  34. Wan L, Shu Q, Zhu J, Jin S, Li N, Chen X, Chen S (2016) A new multifunctional Schiff-based chemosensor for mask-free fluorimetric and colorimetric sensing of F and CN. Talanta 152:39–44. https://doi.org/10.1016/j.talanta.2016.01.045

    Article  CAS  PubMed  Google Scholar 

  35. Kolcu F, Erdener D, Kaya İ (2020) A Schiff base based on triphenylamine and thiophene moieties as a fluorescent sensor for cr(III) ions: synthesis, characterization and fluorescent applications. Inorg Chim Acta 509:119676. https://doi.org/10.1016/j.ica.2020.119676

    Article  CAS  Google Scholar 

  36. Bamnavat K, Bhardwaj V, Anand T, Ashok Kumar SK, Sahoo SK (2021) Pyridoxal derived AIEgen as a fluorescent pH sensor. Dye Pigment 184:108844. https://doi.org/10.1016/j.dyepig.2020.108844

    Article  CAS  Google Scholar 

  37. Bhardwaj V, Thangaraj A, Varddhan S, Ashok Kumar SK, Crisponi G, Sahoo SK (2020) An aggregation-induced emission active vitamin B6 cofactor derivative: application in pH sensing and detection of latent fingerprints. Photochem Photobiol Sci 19:1402–1409. https://doi.org/10.1039/d0pp00262c

    Article  CAS  PubMed  Google Scholar 

  38. Song I-h, Torawane P, Lee J-S, Warkad SD, Borase A, Sahoo SK, Nimse SB, Kuwar A (2021) The detection of Al3+ and Cu2+ ions using isonicotinohydrazide-based chemosensors and their application to live-cell imaging. Mater Adv 2:6306–6314. https://doi.org/10.1039/d1ma00564b

    Article  CAS  Google Scholar 

  39. Gupta VK, Jain AK, Shoora SK (2015) New “on–off” optical probe based on Schiff base respondingto Al3+ions: Logic gate application. Sens Actuat B-Chem 219:218–231. https://doi.org/10.1016/j.snb.2015.05.026

    Article  CAS  Google Scholar 

  40. Dey S, Sena C, Sinha C (2020) Chromogenic hydrazide Schiff base reagent: Spectrophotometric determination of CN ion. Spectrochim Acta A 225:117471. https://doi.org/10.1016/j.saa.2019.117471

    Article  CAS  Google Scholar 

  41. Ullah Z, Sonawane PM, Nguyen TS, Garai M, Churchill DG, Yavuz CT (2021) Bisphenol–based cyanide sensing: selectivity, reversibility, facile synthesis, bilateral “OFF-ON” fluorescence, C2ν structural and conformational analysis. Spectrochim Acta A 259:119881. https://doi.org/10.1016/j.saa.2021.119881

    Article  CAS  Google Scholar 

  42. Yapar G, Demir N, Kiraz A, Özkat GY, Yıldız M (2022) Synthesis, Biological Activities, antioxidant Properties, and Molecular Docking Studies of Novel Bis-Schiff Base Podands as Responsive Chemosensors for Anions. J Mol Struct 1266:133530. https://doi.org/10.1016/j.molstruc.2022.133530

    Article  CAS  Google Scholar 

  43. Wang T, Pang Q, Tong Z, Wang M, Xiao N (2021) Selective sensing of PPi by fluorogenic Al(III)-probe complex in aqueous medium. Spectrochim Acta A 250:119249. https://doi.org/10.1016/j.saa.2020.119249

    Article  CAS  Google Scholar 

  44. Zhang M, Gong L, Sun C, Li W, Chang Z, Qi D (2019) A newfluorescent-colorimetric chemosensor based on a Schiff base for detecting Cr3+, Cu2+, Fe3+ and Al3+ ions. Spectrochim Acta A 214:7–13. https://doi.org/10.1016/j.saa.2019.01.089

    Article  CAS  Google Scholar 

  45. Azadbakht R, Rashidi S (2014) A new fluorescent chemosensor for Al3+ ion based on schiff base naphthalene derivatives. Spectrochim Acta A 127:329–334. https://doi.org/10.1016/j.saa.2014.02.101

    Article  CAS  Google Scholar 

  46. Hu T, Cheng J, Li L, Zhan Y, Li W, Chang Z, Sun C (2019) A new Schiff base fluorescent-colorimetric probe containing fluorenenaphthalene structure: Multifunction detection. Inorg Chim Acta 498:119131. https://doi.org/10.1016/j.ica.2019.119131

    Article  CAS  Google Scholar 

  47. Li Q, Zhang JH, Cai Y, Qu WJ, Gao GY, Lin Q, Yao H, Zhang YM, Wei TB (2015) A facile colorimetric and fluorescent cyanide chemosensor: utilization of the nucleophilic addition induced by resonance-assisted hydrogen bond. Tetrahedron 71:857–862. https://doi.org/10.1016/j.tet.2014.12.047

    Article  CAS  Google Scholar 

  48. Alreja P, Kau N (2019) Test kit” of chromogenic and ratiometric 1,10-phenanthroline based chemosensor for the recognition of F and CN ions. Inorg Chem Comm 110:107600. https://doi.org/10.1016/j.inoche.2019.107600

    Article  CAS  Google Scholar 

  49. Mohanty P, Behura R, Bhardwaj V, Dash PP, Sahoo SK, Jali BR (2022) Recent advancement on chromo-fluorogenic sensing of aluminum(III) with Schiff bases. Trends Environ Anal Chem 34:e00166. https://doi.org/10.1016/j.teac.2022.e00166

    Article  CAS  Google Scholar 

  50. Bhardwaj V, Bhardwaj K, Sahoo SK (2023) AIE + ESIPT’ active 2–hydroxy–naphthalene hydrazone for the fluorescence turn–on sensing of Al3+. J Fluoresc 33:1157–1164. https://doi.org/10.1007/s10895-022-03138-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Prof. Dr. Metin GÜRÜ, Prof. Dr. Fatih Akkurt and Prof. Dr. Atilla Murathan for providing the necessary facilities of studing with fluorescence spectrophotometer.

Author information

Authors and Affiliations

Authors

Contributions

Ö.G. conducted the main research experiments. Ö.G. and L.N. performed luminescence measurements. L.N. drew the graphs. Ö.G. wrote the draft of the manuscript. L.N. agreed the draft of this manuscript.

Corresponding author

Correspondence to Özlem Güngör.

Ethics declarations

Declarations

Ethical Approval

The authors declare that this manuscript does not contain research involving human participants and/or animals.

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Additional information

This work is dedicated to 100th anniversary of Republic of Turkey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2875 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güngör, Ö., Nuralin, L. A Novel Naphthylidene-diimine Chemosensor for Selective Colorimetric and Fluorometric Detection of Al3+ and CN Ions. J Fluoresc 34, 1319–1342 (2024). https://doi.org/10.1007/s10895-023-03368-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03368-z

Keywords

Navigation