Skip to main content
Log in

Effect of Chloride, Sulfate, and Ferrate Salts on Electronic Energy Levels of Anthracene Proving it a Potential Candidate as an ON and ON–OFF UV–Vis Sensor

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Anthracene molecule possesses remarkable optical activity and till today this molecule is of special interest of scientists. Present study is focused on the study of effects of Chloride, Sulfate, Nitrate and Ferrate salts on absorption and emission spectra of targeted fluorophore in carbontetrachloride, chloroform, dichloromethane and methanol. Prominent solvatochromic effects shows dependence of HOMO–LUMO orbitals on solvent polarity. Anthracene molecules exhibits changes in absorption and emission spectra, and show both ON and ON–OFF behavior on addition of said ions. Based on experimental results it was concluded that fluorophore molecule could be used more effectively as UV–Visible (UV-V) sensors in comparison to the emission sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Material

All the written material is new not a copy.

Code Availability

Not Applicable.

References

  1. Barraza-Jimenez D, Flores-Hidalgo A, Glossman-Mitnik D (2009) Theoretical analysis of anthracene and its carbonyl and carboxyl derivatives using DFT and TD-DFT. J Mol Struct (Thoechem) 894(1):64–70

    Article  CAS  Google Scholar 

  2. Lara-Severino Rdel C et al (2016) Determination of the residual anthracene concentration in cultures of haloalkalitolerant actinomycetes by excitation fluorescence, emission fluorescence, and synchronous fluorescence: Comparative study. J Anal Methods Chem 2016:6287931

    PubMed  Google Scholar 

  3. Irshad R, Asim S, Mansha A, Arooj Y (2023) Naphthalene and its derivatives: Efficient fluorescence probes for detecting and imaging purposes. J Fluoresc 33(4):1273–1303. https://doi.org/10.1007/s10895-023-03153

  4. Tigoianu R, Dorohoi DO, Airinei A (2009) Solvent influence on the electronic absorption spectra of anthracene. Rev de Chim 60(1):42–44

  5. Fatima S et al (2022) Absorption spectra of coumarin and its derivatives. Chem Pap 76(2):627–638

    Article  CAS  Google Scholar 

  6. Huda ZU et al (2022) Effect of pH on fluorescence spectra of coumarin derivatives. J Fluoresc 32(1):57–66

    Article  CAS  PubMed  Google Scholar 

  7. de Melo JS et al (2005) Singlet and triplet energy transfer in a bichromophoric system with anthracene covalently linked through sulfonamide to a meso-tetraphenylporphyrin. J Photochem Photobiol A Chem 172(2):151–160

    Article  Google Scholar 

  8. Saito Y et al (2008) Anthracene based base-discriminating fluorescent oligonucleotide probes for SNPs typing: synthesis and photophysical properties. Bioorg Med Chem 16(1):107–113

    Article  CAS  PubMed  Google Scholar 

  9. Filpponen I, Sadeghifar H, Argyropoulos DS (2011) Photoresponsive cellulose nanocrystals. Nanomater Nanotechnol 1:7

    Article  Google Scholar 

  10. Na EJ et al (2013) Non-doped blue OLEDs based on 9,9′-dimethylfluorene containing 10-naphthylanthracene derivatives. Mol Cryst Liq Cryst 584(1):113–122

    Article  CAS  Google Scholar 

  11. Baviera GS, Donate PM (2021) Recent advances in the syntheses of anthracene derivatives 17:2028–2050

    CAS  Google Scholar 

  12. Fahmy HM et al (2018) Spectroscopic study of solvent polarity on the optical and photo-physical properties of novel 9,10-bis(coumarinyl)anthracene. J Fluoresc 28(6):1421–1430

    Article  CAS  PubMed  Google Scholar 

  13. Asim S et al (2014) Spectral and thermodynamic properties for the exciplexes of N-alkyl carbazoles with dicyanobenzenes in THF. Spectrochim Acta Part A Mol Biomol Spectrosc 118:138–145

    Article  CAS  Google Scholar 

  14. Ali M et al (2009) Hydrogen-bond-induced microstructural transition of ionic micelles in the presence of neutral naphthols: pH dependent morphology and location of surface activity. J Phys Chem B 113(47):15563–15571

    Article  CAS  PubMed  Google Scholar 

  15. Qazi MA et al (2013) An excellent copper selective chemosensor based on calix[4]arene framework. Anal Chim Acta 761:157–168

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y et al (2020) Insight into effects of molten KNO3-NaNO2-NaNO3 volumetric absorption of solar radiation from different factors by absorption spectroscopy. J Mol Liq 301:110604

    Article  CAS  Google Scholar 

  17. Garci A et al (2020) Mechanical-bond-induced exciplex fluorescence in an anthracene-based homo[2]catenane. J Am Chem Soc 142(17):7956–7967

    Article  CAS  PubMed  Google Scholar 

  18. Xu L et al (2018) Substitution position modulating the photophysical properties of anthracene derivatives based on Tröger’s base. Tetrahedron 74(36):4738–4745

    Article  CAS  Google Scholar 

  19. Xu J et al (2017) A family of multi-color anthracene carboxyimides: Synthesis, spectroscopic properties, solvatochromic fluorescence and bio-imaging application. Dyes Pigm 139:166–173

    Article  CAS  Google Scholar 

  20. Christ RD, Wernli RL (2014) Chapter 12 - Sensor Theory. In: Christ RD, Wernli RL (eds) The ROV Manual (Second Edition). Butterworth-Heinemann, Oxford, pp 297–326

    Chapter  Google Scholar 

  21. Saravanan P, Jayamoorthy K, Kumar SA (2015) Switch-On fluorescence and photo-induced electron transfer of 3-aminopropyltriethoxysilane to ZnO: Dual applications in sensors and antibacterial activity. Sens Actuators B Chem 221:784–791

    Article  CAS  Google Scholar 

  22. Suresh S, Jayamoorthy K, Karthikeyan S (2018) Switch-on fluorescence of 5-amino-2-mercapto benzimidazole by Mn3O4 nanoparticles: Experimental and theoretical approach. J Lumin 198:28–33

    Article  CAS  Google Scholar 

  23. Selvaraj SK et al (2022) 21 - Wireless nanosensor network for irrigation control. Nanosens Smart Agric, A. Denizli, et al., Editors. Elsevier. p. 463–478

  24. Kang Z et al (2022) Smart COD sensor using UV–Vis spectroscopy against optical window surface contamination. Measurement 187:110125

    Article  Google Scholar 

  25. Mirsky VM (2008) Chapter 18 - spreader-bar structures as molecular templates for electrochemical synthesis of nanoparticles. In: Corain B, Schmid G, Toshima N (eds) Metal Nanoclust Catal Mater Sci. Elsevier, Amsterdam, pp 321–325

    Chapter  Google Scholar 

  26. Prakash SM et al (2016) Fluorescence tuning of 2-(1H-Benzimidazol-2-yl)phenol-ESIPT process. J Lumin 172:304–308

    Article  CAS  Google Scholar 

  27. Jayabharathi J, Thanikachalam V, Jayamoorthy K (2013) Synthesis of some fluorescent benzimidazole derivatives using cobalt(ii) hydroxide as highly efficient catalyst — spectral and physico-chemical studies and ESIPT process. Photochem Photobiol Sci 12(10):1761–1773

    Article  CAS  PubMed  Google Scholar 

  28. Jayabharathi J, Thanikachalam V, Jayamoorthy K (2012) Effective fluorescent chemosensors for the detection of Zn2+ metal ion. Spectrochim Acta Part A Mol Biomol Spectrosc 95:143–147

    Article  CAS  Google Scholar 

  29. Karunakaran C et al (2012) Photosensitization of imidazole derivative by ZnO nanoparticle. J Fluoresc 22(4):1047–1053

    Article  CAS  PubMed  Google Scholar 

  30. Karunakaran C et al (2012) Inhibition of fluorescence enhancement of benzimidazole derivative on doping ZnO with Cu and Ag. J Photochem Photobiol, A 247:16–23

    Article  CAS  Google Scholar 

  31. Saravanan P, Jayamoorthy K, Anandakumar S (2016) Fluorescence quenching of APTES by Fe2O3 nanoparticles – Sensor and antibacterial applications. J Lumin 178:241–248

    Article  CAS  Google Scholar 

  32. Suresh S et al (2016) Switch-Off fluorescence of 5-amino-2-mercapto benzimidazole with Ag3O4 nanoparticles: Experimental and theoretical investigations. Sens Actuators B Chem 225:463–468

    Article  CAS  Google Scholar 

  33. Jayabharathi J et al (2012) Solvatochromic studies of fluorescent azo dyes: Kamlet-Taft (π*, α and β) and catalan (Spp, SA and SB) solvent scales approach. J Fluoresc 22(1):213–221

    Article  CAS  PubMed  Google Scholar 

  34. Anbuselvan C et al (2012) Physico-chemical studies on some fluorescence sensors: DFT based ESIPT process. Spectrochim Acta Part A Mol Biomol Spectrosc 97:125–130

    Article  CAS  Google Scholar 

  35. Jayabharathi J et al (2014) Estimation of excited state dipolemoments from solvatochromic shifts-effect of pH. J Fluoresc 24(2):599–612

    Article  CAS  PubMed  Google Scholar 

  36. Jayabharathi J et al (2013) Synthesis, spectral studies and solvatochromism of some novel benzimidazole derivatives – ESIPT process. Spectrochim Acta Part A Mol Biomol Spectrosc 105:223–228

    Article  CAS  Google Scholar 

  37. Karunakaran C et al (2012) Sensing rutile TiO2 through fluorescence of imidazole derivative. Sens Actuators B Chem 168:263–270

    Article  CAS  Google Scholar 

  38. Schaschke C (2014) A dictionary of chemical engineering, ed. I.C.E. Neil Atkinson. Oxford

  39. Senthilkumar S, Nath S, Pal H (2004) Photophysical properties of coumarin-30 dye in aprotic and protic solvents of varying polarities¶. Photochem Photobiol 80(1):104–111

    CAS  PubMed  Google Scholar 

  40. Omary MA, Patterson HH (2017) Luminescence, Theory. In: Lindon JC, Tranter GE, Koppenaal DW (eds) Encyclopedia of Spectroscopy and Spectrometry (Third Edition). Academic Press, Oxford, pp 636–653

    Chapter  Google Scholar 

  41. Tigoianu IR, Dorohoi DO, Airinei A (2009) Solvent influence on the electronic absorption spectra of anthracene. Rev Chim 60(1):42–44

    CAS  Google Scholar 

  42. Yang H, Rasmuson ÅC (2010) Solubility of butyl paraben in methanol, ethanol, propanol, ethyl acetate, acetone, and acetonitrile. J Chem Eng Data 55(11):5091–5093

    Article  CAS  Google Scholar 

  43. Belova AS et al (2021) Solvent-controlled intramolecular excimer emission from organosilicon derivatives of naphthalene. Tetrahedron 93:132287

    Article  CAS  Google Scholar 

  44. Shi B et al (2019) Excited states and excitonic interactions in prototypic polycyclic aromatic hydrocarbon dimers as models for graphitic interactions in carbon dots. Phys Chem Chem Phys 21(18):9077–9088

    Article  CAS  PubMed  Google Scholar 

  45. Sahi S et al (2018) Wavelength-shifting properties of luminescence nanoparticles for high energy particle detection and specific physics process observation. Sci Rep 8(1):10515

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chouk R, Bergaoui M, Khalfaoui M (2018) On the optoelectronic properties of non-covalently functionalized graphene for solar cell application. J Comput Electron 17(2):791–809

    Article  CAS  Google Scholar 

  47. Vorona MY et al (2019) Developing 9,10-anthracene derivatives: Optical, electrochemical, thermal, and electrical characterization. Materials 12(17):2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kayama A, Shimizu A, Shintani R (2021) Anthracene-based zwitterion with a small HOMO–LUMO energy gap. Synthesis 53(21):4042–4047

    Article  CAS  Google Scholar 

  49. Nishiuchi T, Kisaka K, Kubo T (2021) Synthesis of anthracene-based cyclic π-clusters and elucidation of their properties originating from congested aromatic planes. Angew Chem Int Ed 60(10):5400–5406

    Article  CAS  Google Scholar 

  50. González I et al (2020) Studies on the solvatochromic effect and NLO response in new symmetric bimetallic Rhenium compounds. Polyhedron 187:114679

    Article  Google Scholar 

  51. Fatima S, Mansha A, Asim S (2022) Computational studies followed by effect of solvent polarity and salts on HOMO–LUMO gap of 7-hydroxy coumarine notabally reflected by absorption and emission spectra. J Fluoresc 32(6):2351–2362

    Article  CAS  PubMed  Google Scholar 

  52. Hamlin JD, Phillips DAS, Whiting A (1999) UV/Visible spectroscopic studies of the effects of common salt and urea upon reactive dye solutions. Dyes Pigm 41(1):137–142

    Article  CAS  Google Scholar 

  53. Loisel G et al (2021) Ionic strength effect on the formation of organonitrate compounds through photochemical degradation of vanillin in liquid water of aerosols. Atmos Environ 246:118140

    Article  CAS  Google Scholar 

  54. Chen W, Zhu T (2014) Formation of nitroanthracene and anthraquinone from the heterogeneous reaction between NO2 and anthracene adsorbed on NaCl particles. Environ Sci Technol 48(15):8671–8678

    Article  CAS  PubMed  Google Scholar 

  55. Kan L et al (2019) Anthracene dimer crosslinked polyurethanes as mechanoluminescent polymeric materials. New J Chem 43(6):2658–2664

    Article  CAS  Google Scholar 

  56. Ma C et al (2007) Synthesis and hypochromic effect of phthalocyanines and metal phthalocyanines. Dyes Pigm 74(1):141–147

    Article  CAS  Google Scholar 

  57. Tong A et al (2020) Study on the shift of ultraviolet spectra in aqueous solution with variations of the solution concentration. Spectrochim Acta Part A Mol Biomol Spectrosc 234:118259

    Article  CAS  Google Scholar 

  58. Ghana P et al (2020) Reduced arene complexes of scandium. Chem A Eur J 26(45):10290–10296

    Article  CAS  Google Scholar 

  59. Mäntele W, Deniz E (2017) UV–VIS absorption spectroscopy: Lambert-Beer reloaded. Spectrochim Acta Part A Mol Biomol Spectrosc 173:965–968

    Article  Google Scholar 

  60. Karoui R (2018) Spectroscopic technique: Fluorescence and ultraviolet-visible (UV-Vis) spectroscopies. Modern techniques for food authentication. Elsevier, pp 219–252

    Chapter  Google Scholar 

  61. Guo Y et al (2019) Studies of the effect of halide ions on the fluorescence of quinine sulfate. Luminescence 34(4):450–455

    Article  CAS  PubMed  Google Scholar 

  62. Kivrak A et al (2017) Synthesis and solar-cell applications of novel furanyl-substituted anthracene derivatives. Opt Mater 73:206–212

    Article  CAS  Google Scholar 

  63. Modukuru NK et al (2006) Tuning the DNA binding modes of an anthracene derivative with salt. J Photochem Photobiol A 177(1):43–54

    Article  CAS  Google Scholar 

  64. Peter Pappas S, Tilley MG, Pappas BC (2003) Anthracene-bound sulfonium salts: highly efficient photoinitiators for cationic polymerization: A new synthesis of sulfonium salts which avoids the use of silver salts. J Photochem Photobiol A Chem 159(2):161–171

    Article  CAS  Google Scholar 

  65. Haldar R et al (2016) Luminescent metal-organic complexes of pyrene or anthracene chromophores: Energy transfer assisted amplified exciplex emission and Al3+ sensing. Cryst Growth Des 16(1):82–91

    Article  CAS  Google Scholar 

  66. Sayin S (2021) Synthesis of new anthracene-substituted calix[4]triazacrown-5 as highly sensitive fluorescent chemosensor and extractant against hazardous dichromate anion. Luminescence 36(7):1716–1724

    Article  CAS  PubMed  Google Scholar 

  67. Das A et al (2021) Dynamics of anthracene excimer formation within a water-soluble nanocavity at room temperature. J Am Chem Soc 143(4):2025–2036

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept and design of this article is collective contribution of all authors. They all read and approve the final manuscript of this research article. Zakia Kausar along with Sadia Asim plays a vital role in performing experimental analysis regarding the absorption and emission studies with the help of UV–Visible and Fluorescence spectroscopies. Literature survey was done by Asim Mansha. The first draft of manuscript was written by Zakia Kausar which was later refined by Sadia Asim and Asim Mansha.

Corresponding author

Correspondence to Sadia Asim.

Ethics declarations

Ethics Approval

Not applicable.

Conset to Participate

Yes, I got permission.

Consent for Publication

Yes, you can publish it.

Conflict of Interest

The research article entitled “Effect of Chloride, Sulfate, and Ferrate salts on Electronic Energy levels of Anthracene Proving it a Potential Candidate as an ON and ON–OFF UV–Vis Sensor.”: is carried out with the financial help from Higher Education Commission, Pakistan (Project number: 9922). All the authors involved in the write up of this article do not have any conflict of Interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kausar, Z., Mansha, A. & Asim, S. Effect of Chloride, Sulfate, and Ferrate Salts on Electronic Energy Levels of Anthracene Proving it a Potential Candidate as an ON and ON–OFF UV–Vis Sensor. J Fluoresc 34, 1365–1378 (2024). https://doi.org/10.1007/s10895-023-03363-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03363-4

Keywords

Navigation