Skip to main content

Advertisement

Log in

Exploring the pH-Responsive Interaction of β-Blocker Drug Propranolol with Biomimetic Micellar Media: Fluorescence and Electronic Absorption Studies

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Interaction of neutral and charged lipophilic beta-blocker drug, propranolol (PPL) with biomimicking nanocavities formed by micelles bearing same and opposite charges namely, cationic cetyltrimethylammonium bromide (CTAB), a surface-active ionic liquid 1-hexadecyl-3-methylimidazolium chloride (HDMIC) and anionic sodium dodecyl sulphate (SDS) have been investigated using fluorescence and absorption spectroscopic techniques. Binding of PPL to SDS at pH < pKa is characterised by biphasic interactions with decrease in fluorescence intensity at lower concentrations and subsequent increase post micellization. All the surfactants show significant interactions with the neutral drug molecule at pH > pKa, which is evident from the strongest binding constant (\({K}_{b}\)) values at pH 10.4. Results of quenching studies indicate that the location of drug molecule is determined by its charge, which is influenced by both pH and charge on micelle surface. For PPL-CTAB and PPL-HDMIC systems, quenching was strongest at pH 10.4, moderate at pH 7.4 and was absent at pH 3.5. However, the PPL-SDS system displayed similar \({K}_{SV}\) values at all pH conditions, suggesting that the probe is at the same position regardless of pH. Non-covalent interactions, which play crucial role in biological systems, are similarly the primary driving force governing the interaction between PPL and surfactant micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Paul BK, Ray D, Guchhait N (2012) Binding Interaction and Rotational-Relaxation Dynamics of a Cancer Cell Photosensitizer with various Micellar Assemblies. J Phys Chem B 116:9704–9717. https://doi.org/10.1021/jp304280m

    Article  CAS  PubMed  Google Scholar 

  2. Paul BK, Ghosh N, Mukherjee S (2015) Modulated photophysics and rotational-relaxation dynamics of coumarin 153 in nonionic micelles: the role of headgroup size and tail length of the surfactants. RSC Adv 5:9381–9388. https://doi.org/10.1039/C4RA12568A

    Article  CAS  Google Scholar 

  3. Mukhija A, Kishore N (2018) Drug partitioning in individual and mixed micelles and interaction with protein upon delivery form micellar media. J Mol Liq 265:1–15. https://doi.org/10.1016/j.molliq.2018.05.107

    Article  CAS  Google Scholar 

  4. Jabbari M, Teymoori F (2018) An insight into effect of micelle-forming surfactants on aqueous solubilization and octanol/water partition coefficient of the drugs gemfibrozil and ibuprofen. J Mol Liq 262:1–7. https://doi.org/10.1016/j.molliq.2018.04.054

    Article  CAS  Google Scholar 

  5. Farías T, de Ménorval LC, Zajac J, Rivera A (2009) Solubilization of drugs by cationic surfactants micelles: conductivity and 1H NMR experiments. Colloids Surf A 345(1–3):51–57. https://doi.org/10.1016/j.colsurfa.2009.04.022

    Article  CAS  Google Scholar 

  6. Dasgupta M, Judy E, Kishore N (2020) Partitioning of anticancer drug 5-fluorouracil in micellar media explored by physicochemical properties and energetics of interactions: quantitative insights for implications in drug delivery. Colloids and Surfaces B: Bio interfaces 187:110730. https://doi.org/10.1016/j.colsurfb.2019.110730

    Article  CAS  Google Scholar 

  7. Mallick A, Chattopadhyay N (2004) Photophysics of norharman in micellar environments: a fluorometric study. Biophys Chem 109(2):261–270. https://doi.org/10.1016/j.bpc.2003.11.008

    Article  CAS  PubMed  Google Scholar 

  8. Turro NJ, rätzel M, Braun AM (1980) Photophysical and photochemical processes in micellar systems. Angewandte Chemie International Edition in English 19(9):675–696. https://doi.org/10.1002/anie.198006751

    Article  Google Scholar 

  9. Burkauskas J, Noreikaite A, Bunevicius A, Brozaitiene J, Neverauskas J, Mickuviene N, Bunevicius R (2016) Beta-1–selective beta-blockers and cognitive functions in patients with coronary artery disease: a cross-sectional study. J Neuropsychiatry Clin Neurosci 28(2):143–146. https://doi.org/10.1176/appi.neuropsych.15040088

    Article  PubMed  Google Scholar 

  10. Dooley TP (2015) Treating anxiety with either beta blockers or antiemetic antimuscarinic drugs: a review. Ment Health Fam Med 11(02):89–99

    Article  Google Scholar 

  11. Pérez-Castrillón JL, Duenas-Laita DA (2009) Are beta-blockers useful in the prevention of osteoporotic fractures? Eur Rev Med Pharmacol Sci 13(3):157–162

    PubMed  Google Scholar 

  12. Migliazzo CV, Hagan JC (2014) Beta blocker eye drops for treatment of acute migraine. Mo Med 111(4):283

    PubMed  PubMed Central  Google Scholar 

  13. Hawley SR, Bray PG, O’Neill PM, Park BK, Ward SA (1996) The role of drug accumulation in 4-aminoquinoline antimalarial potency: the influence of structural substitution and physicochemical properties. Biochem Pharmacol 52(5):723–733. https://doi.org/10.1016/0006-2952(96)00354-1

    Article  CAS  PubMed  Google Scholar 

  14. Ginsburg H, Krugliak M (1992) Quinoline-containing antimalarials—mode of action, drug resistance and its reversal an update with unresolved puzzles. Biochem Pharmacol 43(1):63–70. https://doi.org/10.1016/0006-2952(92)90662-3

    Article  CAS  PubMed  Google Scholar 

  15. Nieciecka D, Królikowska A, Krysinski P (2015) Probing the interactions of mitoxantrone with biomimetic membranes with electrochemical and spectroscopic techniques. Electrochim Acta 165:430–442. https://doi.org/10.1016/j.electacta.2015.02.223

    Article  CAS  Google Scholar 

  16. Zana R (1986) Surfactant solutions new methods of investigations

  17. Raghuraman H, Chattopadhyay A (2004) Effect of micellar charge on the conformation and dynamics of melittin. Eur Biophys J 33:611–622. https://doi.org/10.1007/s00249-004-0402-7

    Article  CAS  PubMed  Google Scholar 

  18. Bisby RH, Botchway SW, Crisostomo AG, Karolin J, Parker AW, Schröder L (2010) Interactions of the β-blocker drug, propranolol, with detergents, β-cyclodextrin and living cells studied using fluorescence spectroscopy and imaging. Spectroscopy 24(1–2):137–142. https://doi.org/10.3233/SPE-2010-0415

    Article  CAS  Google Scholar 

  19. Gujar V, Sangale V, Ottoor D (2019) A selective turn off fluorescence sensor based on propranolol-SDS assemblies for Fe 3 + detection. J Fluoresc 29:91–100. https://doi.org/10.1007/s10895-018-2313-5

    Article  CAS  PubMed  Google Scholar 

  20. Surewicz WK, Leyko W (1981) Interaction of propranolol with model phospholipid membranes monolayer, spin label and fluorescence spectroscopy studies. Biochim et Biophys Acta (BBA)-Biomembranes 643(2):387–397. https://doi.org/10.1016/0005-2736(81)90083-3

    Article  CAS  Google Scholar 

  21. Suwalsky M, Zambrano P, Villena F, Gallardo M, Manrique-Moreno MJ, Jemiola-Rzeminska M, Dukes N (2015) Morphological effects induced in vitro by propranolol on human erythrocytes. J Membr Biol 248:683–693. https://doi.org/10.1007/s00232-015-9780-2

    Article  CAS  PubMed  Google Scholar 

  22. Först G, Cwiklik L, Jurkiewicz P, Schubert R, Hof M (2014) Interactions of beta-blockers with model lipid membranes: molecular view of the interaction of acebutolol, oxprenolol, and propranolol with phosphatidylcholine vesicles by time-dependent fluorescence shift and molecular dynamics simulations. Eur J Pharm Biopharm 87(3):559–569. https://doi.org/10.1016/j.ejpb.2014.03.013

    Article  CAS  PubMed  Google Scholar 

  23. Kalyanasundaram K, Thomas JK (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99(7):2039–2044. https://doi.org/10.1021/ja00449a004

    Article  CAS  Google Scholar 

  24. Aguiar J, Carpena P, Molina-Bolıvar JA, Ruiz CC (2003) On the determination of the critical micelle concentration by the pyrene 1: 3 ratio method. J Colloid Interface Sci 258(1):116–122. https://doi.org/10.1016/S0021-9797(02)00082-6

    Article  CAS  Google Scholar 

  25. Caetano W, Tabak M (2000) Interaction of chlorpromazine and trifluoperazine with anionic sodium dodecyl sulfate (SDS) micelles: electronic absorption and fluorescence studies. J Colloid Interface Sci 225(1):69–81. https://doi.org/10.1006/jcis.2000.6720

    Article  CAS  PubMed  Google Scholar 

  26. Rosen MJ (1989) Surface and interfacial phenomena 2nd edn. Wiely New York, 151

  27. Madrakian T, Afkhami A, Mohammadnejad M (2009) Simultaneous spectrofluorimetric determination of levodopa and propranolol in urine using feed-forward neural networks assisted by principal component analysis. Talanta 78(3):1051–1055. https://doi.org/10.1016/j.talanta.2009.01.001

    Article  CAS  PubMed  Google Scholar 

  28. Zhang F, Du Y, Ye B, Li P (2007) Study on the Interaction between the chiral drug of propranolol and α1-acid glycoprotein by fluorescence spectrophotometry. J Photochem Photobiol B 86(3):246–251. https://doi.org/10.1016/j.jphotobiol.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  29. de Souza Santos M, de Morais Del MPF, Ito AS, Naal RMZG (2014) Binding of chloroquine to ionic micelles: Effect of pH and micellar surface charge. J Lumin 147:49–58. https://doi.org/10.1016/j.jlumin.2013.10.037

    Article  CAS  Google Scholar 

  30. Barnadas-Rodriguez R, Estelrich J (2009) Photophysical changes of pyranine induced by surfactants: evidence of premicellar aggregates. J Phys Chem B 113(7):1972–1982. https://doi.org/10.1021/jp806808u

    Article  CAS  PubMed  Google Scholar 

  31. Maurya N, Alzahrani KA, Patel R (2019) Probing the intercalation of noscapine from sodium dodecyl sulfate micelles to calf thymus deoxyribose nucleic acid: a mechanistic approach. ACS omega 4(14):15829–15841. https://doi.org/10.1021/acsomega.9b01543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tran CD, Van Fleet TA (1988) Micellar induced simultaneous enhancement of fluorescence and thermal lensing. Anal Chem 60(22):2478–2482. https://doi.org/10.1021/ac00173a009

    Article  CAS  Google Scholar 

  33. Singh H, Hinze WL (1982) Micellar enhanced spectrofluorimetric methods: application to the determination of pyrene. Anal Lett 15(3):221–243. https://doi.org/10.1080/00032718208064379

    Article  CAS  Google Scholar 

  34. Chhetri N, Ali M (2023) Effect of hydrophilic atenolol and lipophilic Propranolol β-blockers on the surface and bulk aggregation of quaternary ammonium bromide surfactants: a comparative study. J Mol Liq 121858. https://doi.org/10.1016/j.molliq.2023.121858

  35. Kalyanasundaram K (2012) Photochemistry in microheterogeneous systems. Elsevier

  36. Rohatgi-Mukherjee KK (1988) Fundamental of Photochemistry. Wiley Eastern, New Delhi), p 172

    Google Scholar 

  37. Hansson P, Almgren M (2000) Reliable aggregation numbers are obtained for polyelectrolyte bound cationic micelles using fluorescence quenching with a cationic surfactant quencher. J Phys Chem B 104(5):1137–1140. https://doi.org/10.1021/jp9923217

    Article  CAS  Google Scholar 

  38. Lakowicz JR (2006) Principles of fluorescence spectroscopy, Third. Springer, New York, USA

    Book  Google Scholar 

  39. Gehlen MH, De Schryver FC (1993) Time-resolved fluorescence quenching in micellar assemblies. Chem Rev 93(1):199–221. https://doi.org/10.1021/cr00017a010

    Article  CAS  Google Scholar 

  40. Lunardi CN, Bonilha JBS, Tedesco AC (2002) Stern–Volmer quenching and binding constants of 10-alkyl-9 (10H)-acridone probes in SDS and BSA. J Lumin 99(1):61–71. https://doi.org/10.1016/S0022-2313(02)00227-2

    Article  CAS  Google Scholar 

  41. Lima SA, Cordeiro-da-Silva A, de Castro B, Gameiro P (2007) Sensitivity of P-glycoprotein tryptophan residues to benzodiazepines and ATP interaction. Biophys Chem 125(1):143–150. https://doi.org/10.1016/j.bpc.2006.07.006

    Article  CAS  PubMed  Google Scholar 

  42. Nuin E, Gomez-Mendoza M, Marin ML, Andreu I, Miranda MA (2013) Influence of drug encapsulation within mixed micelles on the excited state dynamics and accessibility to ionic quenchers. J Phys Chem B 117(32):9327–9332. https://doi.org/10.1021/jp404353u

    Article  CAS  PubMed  Google Scholar 

  43. Platt JR (1949) Classification of spectra of cata-condensed hydrocarbons. J Chem Phys 17(5):484–495. https://doi.org/10.1063/1.1747293

    Article  CAS  Google Scholar 

  44. Das P, Chakrabarty A, Mallick A, Chattopadhyay N (2007) Photophysics of a cationic biological photosensitizer in anionic micellar environments: combined effect of polarity and rigidity. J Phys Chem B 111(38):11169–11176. https://doi.org/10.1021/jp073984o

    Article  CAS  PubMed  Google Scholar 

  45. Chakrabarty A, Das P, Mallick A, Chattopadhyay N (2008) Effect of surfactant chain length on the binding interaction of a biological photosensitizer with cationic micelles. J Phys Chem B 112(12):3684–3692. https://doi.org/10.1021/jp709818d

    Article  CAS  PubMed  Google Scholar 

  46. Ali M, Saha SK (2010) Hydrogen-Bonded large molecular aggregates of charged amphiphiles and unusual rheology: Photochemistry and Photophysics of Hydroxyaromatic Dopants. Hydrogen Bonding and Transfer in the Excited State 1:711–745. https://doi.org/10.1002/9780470669143.ch31

    Article  Google Scholar 

  47. Ali M, Jha M, Das SK, Saha SK (2009) Hydrogen-bond-induced microstructural transition of ionic micelles in the presence of neutral naphthols: pH dependent morphology and location of surface activity. J Phys Chem B 113(47):15563–15571. https://doi.org/10.1021/jp907677x

    Article  CAS  PubMed  Google Scholar 

  48. Sarpal RS, Belletete M, Durocher G (1993) Fluorescence probing and proton-transfer equilibrium reactions in water, SDS, and CTAB using 3, 3-dimethyl-2-phenyl-3H-indole. J Phys Chem 97(19):5007–5013. https://doi.org/10.1021/j100121a025

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank TMA Pai University Research Fund for providing minor grant for carrying out the research work.

Author information

Authors and Affiliations

Authors

Contributions

Nurendra Chhetri was involved in Conceptualization and Investigation. Moazzam Ali wrote the manuscript. Both the authors reviewed the manuscript.

Corresponding author

Correspondence to Moazzam Ali.

Ethics declarations

Ethical Approval

Not Applicable.

Conflict of Interests

The author(s) declare(s) that there is no conflict of interest associated with the submission of the research for publication. As a corresponding author, I confirm that that the manuscript has been read and approved for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 402 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhetri, N., Ali, M. Exploring the pH-Responsive Interaction of β-Blocker Drug Propranolol with Biomimetic Micellar Media: Fluorescence and Electronic Absorption Studies. J Fluoresc 34, 1291–1306 (2024). https://doi.org/10.1007/s10895-023-03361-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03361-6

Keywords

Navigation