Skip to main content
Log in

Crystal Phase Refinement and Optical Features of Highly Efficient Green Light Radiating Ca9Y(VO4)7: Er3+ Nanophosphors for Emerging Solid-state Lighting Applications

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Ca9Y(VO4)7 phosphor activated with Er3+ ions have been developed by the urea-aided solution combustion technique. XRD profiles assisted with Rietveld refinement executed over-developed Er3+-activated Ca9Y(VO4)7 powder, revealed a trigonal phase with the R3c space group. The electron microscope techniques namely TEM and SEM characterize the size and surface-linked qualities of the developed nanopowder, respectively. The uniform distribution of various elements in the nanocrystalline sample is authenticated by an energy-dispersive spectroscopy (EDS) system. The Eg (band gap) value of 3.64 eV for Ca9Y0.9Er0.1(VO4)7 and 3.74 eV for Ca9Y(VO4)7 has been estimated. Upon 382 nm excitation, Er3+: Ca9Y(VO4)7 phosphor gives rise to the bright green emission owing to the 4S3/24I15/2 transition. The concentration quenching after 10 mol% composition of trivalent erbium ions is attributed to dipole-dipole interlinkages in accordance with Dexter’s theory. The radiative lifetime (1.1083 ms), non-radiative rates (0.2079 ms− 1), quantum efficiency (79%), along with colorimetric parameters i.e. CIE x (= 0.2577), y (= 0.4566), and CCT quantities offer Ca9Y0.9Er0.1(VO4)7 as a proficient green radiating nanomaterial for RGB phosphors in solid-state applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used in the present research work can be made available on reasonable request from the corresponding author (Dr. Rajesh Kumar Malik).

References

  1. Soni AK, Singh BP (2019) Luminescent materials in lighting, display, solar cell, sensing, and biomedical applications. Luminescence. https://doi.org/10.5772/intechopen.82123

    Article  Google Scholar 

  2. Sehrawat P, Khatkar A, Boora P, Kumar M, Malik RK, Khatkar SP, Taxak VB (2020) Emanating cool white light emission from novel down-converted SrLaAlO4:Dy3 + nanophosphors for advanced optoelectronic applications. Ceram Int 46(10):16274–16284. https://doi.org/10.1016/j.ceramint.2020.03.184

    Article  CAS  Google Scholar 

  3. McKittrick J, Shea-Rohwer LE, Green DJ (2014) Review: down conversion materials for solid-state lighting. J Am Ceram Soc 97(5):1327–1352. https://doi.org/10.1111/jace.12943

    Article  CAS  Google Scholar 

  4. Matioli E, Brinkley S, Kelchner KM, Hu YL, Nakamura S, DenBaars S, Speck J, Weisbuch C (2012) High-brightness polarized light-emitting diodes. Light: Sci Appl 1:e22. https://doi.org/10.1038/lsa.2012.22

    Article  CAS  Google Scholar 

  5. Zhong J, Chen D, Zhou Y, Wan Z, Ding M, Bai W, Ji Z (2016) New Eu3+-activated perovskite La0.5Na0.5TiO3 phosphors in glass for warm white light emitting diodes. Dalton Trans 45:4762–4770. https://doi.org/10.1039/C5DT04909A

    Article  CAS  PubMed  Google Scholar 

  6. Sehrawat P, Khatkar A, Boora P, Khanagwal J, Kumar M, Malik RK, Khatkar SP, Taxak VB (2020) Tailoring the tunable luminescence from novel Sm3 + doped SLAO nanomaterials for NUV-excited WLEDs. Chem Phys Lett 755:137758. https://doi.org/10.1016/j.cplett.2020.137758

    Article  CAS  Google Scholar 

  7. Huang X, Han S, Huang W, Liu X (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42:173–201. https://doi.org/10.1039/c2cs35288e

    Article  CAS  PubMed  Google Scholar 

  8. Ajithkumar G, Yoo B, Goral DE, Hornsby PJ, Lin AL, Ladiwala U, Dravid VP, Sardar DK (2013) Multimodal bioimaging using a rare earth doped Gd2O2S:Yb/Er phosphor with upconversion luminescence and magnetic resonance properties. J Mater Chem B 1:1561–1572. https://doi.org/10.1039/C3TB00551H

    Article  CAS  Google Scholar 

  9. Nakajima T, Isobe M, Tsuchiya T, Ueda Y, Manabe T (2010) Correlation between luminescence quantum efficiency and structural properties of vanadate phosphors with chained, dimerized, and isolated VO4 tetrahedra. J Phys Chem C 114:5160–5167

    Article  CAS  Google Scholar 

  10. Chahar S, Devi R, Dalal M, Boora P, Taxak VB, Khatkar SP (2018) Structural and photoluminescent analysis in Judd-Ofelt framework of color tunable SrGd2 (1–x)Eu2xAl2O7 nanophosphor for white light emitting materials. J Lumin 194:271–278. https://doi.org/10.1016/j.jlumin.2017.10.043

    Article  CAS  Google Scholar 

  11. Yuan F, Zhao W, Sun S, Zhang L, Huang Y, Lin Z, Wang G (2014) Polarized spectroscopic properties of Er3+:Ca9Y(VO4)7 crystal. J Lumin 154:241–245. https://doi.org/10.1016/j.jlumin.2014.04.036

    Article  CAS  Google Scholar 

  12. Zhu Y, Liang Y, Zhang M, Tong M, Li G, Wang S (2015) Structure, luminescence properties and energy transfer behavior of color-adjustable Sr3Gd2(Si3O9):Ce3+, Tb3+/Mn2 + phosphors. RSC Adv 5:98350–98360. https://doi.org/10.1039/C5RA20756H

    Article  CAS  Google Scholar 

  13. Ekambaram S, Patil KC (1997) Synthesis and properties of Eu2 + activated blue phosphors. J Alloys Compd 248(1–2):7–12. https://doi.org/10.1016/S0925-8388(96)02622-9

    Article  CAS  Google Scholar 

  14. Li Y, Gecevicius M, Qiu J (2016) Long persistent phosphors-from fundamentals to applications. Chem Soc Rev 45:2090–2136. https://doi.org/10.1039/C5CS00582E

    Article  CAS  PubMed  Google Scholar 

  15. Muniz FTL, Miranda MAR, Morilla dos Santos C, Sasaki JM (2016) The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr A Found Adv 72:385–390. https://doi.org/10.1107/S205327331600365X

    Article  CAS  PubMed  Google Scholar 

  16. Jaboyedoff M, Kübler B, Thélin Ph (1999) An empirical Scherrer equation for weakly swelling mixed-layer minerals, especially illite-smectite. Clay Min 34(4):601–617. https://doi.org/10.1180/000985599546479

    Article  CAS  Google Scholar 

  17. Sehrawat P, Malik RK, Punia R, Kumari N (2022) Design of bright–green radiating Er3+–Singly activated zincate–based nanomaterials for high–performance optoelectronic devices. J Electron Mater 51:391–402. https://doi.org/10.1007/s11664-021-09305-9

    Article  CAS  Google Scholar 

  18. Pan Z, Yu H, Cong H, Zhang H, Wang J, Wang Q, Wei Z, Zhang Z, Boughton RI (2012) Polarized spectral properties and laser demonstration of Nd-doped Sr 3 Y 2 (BO 3) 4 crystal. Appl Opt 51:7144. https://doi.org/10.1364/AO.51.007144

    Article  CAS  PubMed  Google Scholar 

  19. Mendhe MS, Puppalwar SP, Dhoble SJ (2018) Efficient energy transfer and fluorescence in SrYAl 3 O 7: ce 3+, tb 3 + phosphor. Optik 166:15–23. https://doi.org/10.1016/j.ijleo.2018.04.006

    Article  CAS  Google Scholar 

  20. Huang X, Guo H (2018) A novel highly efficient single-composition tunable white-lightemitting LiCa 3 MgV 3 O 12: Eu 3 + phosphor. Dyes Pigm 154:82–86. https://doi.org/10.1016/j.dyepig.2018.02.047

    Article  CAS  Google Scholar 

  21. Huang X, Guo H (2018) LiCa 3 MgV 3 O 12: sm 3+: a new high-efficiency white emitting phosphor. Ceram Int 44:10340–10344. https://doi.org/10.1016/j.ceramint.2018.03.043

    Article  CAS  Google Scholar 

  22. Sehrawat P, Malik RK, Punia R, Sheoran M, Kumari N, Khatkar SP, Taxak VB (2021) Luminescence tuning and structural analysis of new BaYAlZn3O7:Sm3 + nanomaterials with excellent performance for advanced optoelectronic appliances. J Mater Sci: Mater Electron 32(12):15930–15943. https://doi.org/10.1007/s10854-021-06144-6

    Article  CAS  Google Scholar 

  23. Sheoran M, Sehrawat P, Dalal H, Kumari N, Malik RK (2021) Realization of orange-red emanation from novel oxide-based BaSrY4O8:Sm3 + nanocrystals for optoelectronic applications. J Mater Sci: Mater Electron 32(18):23601–23613. https://doi.org/10.1007/s10854-021-06848-9

    Article  CAS  Google Scholar 

  24. Phogat P, Khatkar SP, Taxak VB, Malik RK (2022) Sm3 + doped Bi4MgO4(PO4)2: crystal and optoelectronic investigation of the solution combustion derived bright orange emanating novel nanophosphor for SSLs. Mater Chem Phys 276:125389. https://doi.org/10.1016/j.matchemphys.2021.125389

    Article  CAS  Google Scholar 

  25. Deng Y, Yi S, Wang Y, Xian J (2014) Synthesis and photoluminescence characteristics of Ln3+ (ln = sm, Er and Dy)-doped BaGd2(MoO4)4 phosphors. Opt Mater 36:1378–1383. https://doi.org/10.1016/j.optmat.2014.03.036

    Article  CAS  Google Scholar 

  26. Blasse G (1968) Energy transfer in oxidic phosphors. Phys Lett A 28:444–445. https://doi.org/10.1016/0375-9601(68)90486-6

    Article  CAS  Google Scholar 

  27. Zhai Y, Li X, Liu J, Jiang M (2015) A novel white-emitting phosphor ZnWO4:Dy3+. J Rare Earths 33(14):350–354. https://doi.org/10.1016/S1002-0721

    Article  CAS  Google Scholar 

  28. Dalal J, Dalal M, Devi S, Dhankhar P, Hooda A, Khatkar A, Taxak VB, Khatkar SP (2020) Structural and Judd-Ofelt intensity parameters of a down-converting Ba2GdV3O11:Eu3 + nanophosphors. Mater Chem Phys 243:122631. https://doi.org/10.1016/j.matchemphys.2020.122631

    Article  CAS  Google Scholar 

  29. Dalal J, Dalal M, Devi S, Hooda A, Khatkar A, Taxak VB, Khatkar SP (2019) Structural analysis and Judd-Ofelt parameterization of Ca9Gd(PO4)7:Eu3 + nanophosphor for solid-state illumination. J Lumin 210:293–302. https://doi.org/10.1016/j.jlumin.2019.02.050

    Article  CAS  Google Scholar 

  30. Christy AA, Kvalheim OM, Velapoldi RA (1995) Quantitative analysis in diffuse reflectance spectrometry: a modified Kubelka-Munk equation. Vib Spectrosc 9:19–27. https://doi.org/10.1016/0924-2031(94)00065-O

    Article  CAS  Google Scholar 

  31. Auzel F (2002) A fundamental self-generated quenching center for lanthanide-doped high-purity solids. J Lumin 100:125–130. https://doi.org/10.1016/S0022-2313(02)00457-X

    Article  CAS  Google Scholar 

  32. Sehrawat P, Khatkar A, Devi S, Hooda A, Singh S, Malik RK, Khatkar SP, Taxak VB (2019) An effective emission of characteristic cool white light from Dy3 + doped perovskite type SrLa2Al2O7 nanophosphors in single-phase pc WLEDs. Chem Phys Lett 737:136842. https://doi.org/10.1016/j.cplett.2019.136842

    Article  CAS  Google Scholar 

  33. Dalal H, Kumar M, Sehrawat P, Sheoran M, Sehrawat N, Kumar S, Malik RK (2022) Crystallographic and photophysical aspects of combustion derived novel Dy3+- activated BaSrGd4O8 nanophosphor for advanced solid-state lighting applications. J Mater Sci : Mater Electron 33:13743–13756. https://doi.org/10.1007/s10854-022-08307-5

    Article  CAS  Google Scholar 

  34. Kubelka P (1948) New contributions to the optics of intensely light-scattering materials part I J. Opt. Soc Am 38:448–457. https://doi.org/10.1364/JOSA.38

    Article  CAS  Google Scholar 

  35. Sehrawat P, Khatkar A, Hooda A, Kumar M, Kumar R, Malik RK, Khatkar SP, Taxak VB (2019) An energy-efficient novel emerald Er3 + doped SrGdAlO4 nanophosphor for PC WLEDs excitable by NUV light. Ceram Int 45(18):24104–24114. https://doi.org/10.1016/j.ceramint.2019.08.118

    Article  CAS  Google Scholar 

  36. Biswas P, Kumar V, Sharma V, Bedyal AK, Padha N, Swart HC (2018) Potential of Sm3 + doped LiSrVO4 nanophosphor to fill amber gap in LEDs. Phys B Condens Matter 535:221–226. https://doi.org/10.1016/j.physb.2017.07.040

    Article  CAS  Google Scholar 

  37. Bodson CJ, Pirard SL, Pirard R, Tasseroul L, Bied C, Wong M, Chi Man MW, Heinrichs B, Lambert SD (2014) P-doped Titania xerogels as efficient UV-visible photocatalysts. J Mater Sci Chem Eng 02:17–32. https://doi.org/10.4236/msce.2014.28004

    Article  CAS  Google Scholar 

  38. Yang JW, Guo H, Liu XY, Noh HM, Jeong JH (2014) Down-shift and up-conversion luminescence in BaLuF5:Er3 + glass-ceramics. J Lumin 151:71–75. https://doi.org/10.1016/j.jlumin.2014.02.007

    Article  CAS  Google Scholar 

  39. Maheshwary BP, Singh RA, Singh (2015) Color tuning in thermally stable Sm3+- activated CaWO4 nanophosphors. New J Chem 39:4494–4507. https://doi.org/10.1039/C4NJ01911C

    Article  CAS  Google Scholar 

  40. McCamy CS (1992) Correlated color temperature as an explicit function of chromaticity coordinates. Color Res Appl 17:142–144. https://doi.org/10.1002/col.5080170211

    Article  Google Scholar 

  41. Devi P, Sehrawat P, Sheoran M, Dalal H, Sehrawat N, Malik RK (2023) Probing the Judd Ofelt parameters and photometric attributes of Eu3+- activated Ca9Y(VO4)7 nanomaterials for emerging lighting applications. J Mater Sci Mater Electron 34:867. https://doi.org/10.1007/s10854-023-10264-6

    Article  CAS  Google Scholar 

  42. Devi P, Sehrawat P, Dalal H, Sheoran M, Sehrawat N, Dua R, Malik RK (2023) Exploring the orange–red emission from novel vanadate-based nanomaterials for highly innovative photonic applications. Bull Mater Sci 46:101. https://doi.org/10.1007/s12034-023-02938-y

    Article  CAS  Google Scholar 

  43. Dalal H, Sehrawat P, Sheoran M, Kumar M, Malik RK (2021) Optical, crystallographic and Judd-Ofelt analysis of europium doped Sr6Y2Al4O15 nanocrystals for NUVWLED fabrication. J Mater Sci Mater Electron 33(1):767–778. https://doi.org/10.1007/s10854-021-07347-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the department of chemistry, Maharshi Dayanand University, Rohtak for affording chemicals and instrumental facilities.

Funding

Poonam Devi wholeheartedly thanks to the Human Resource Development Group -CSIR, Pusa, India for their economic cooperation via JRF Award No. 09/382/(11549)/ 2021-EMR-I.

Author information

Authors and Affiliations

Authors

Contributions

Poonam Devi: Data analysis, original draft writing, conceptualizationMonika Sheoran, Hina Dalal, Neelam Kumari: Conceptualization and MethodologyPriyanka Sehrawat: Writing-Reviewing and Editing, Data curationRajesh Kumar Malik: Investigation and supervision.

Corresponding author

Correspondence to Rajesh Kumar Malik.

Ethics declarations

Ethical Approval

The research work presented in this paper is new and has not been published in any other journal. We will follow all norms of the publications like copyright etc.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

•Novel down-conversion Ca9Y(VO4)7:Er3+ nanophosphors were fabricated via solution combustion approach.

•Crystal structure along with phase purity is described by the Rietveld Refinement technique.

•The detailed structural and photoluminescence analysis are done effectively.

•Kubelka-Munk hypothesis has been utilized to determine band-gap energy.

•Widen new prospectus for solid-state lighting, display devices, and solar cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, P., Sehrawat, P., Dalal, H. et al. Crystal Phase Refinement and Optical Features of Highly Efficient Green Light Radiating Ca9Y(VO4)7: Er3+ Nanophosphors for Emerging Solid-state Lighting Applications. J Fluoresc 34, 1241–1252 (2024). https://doi.org/10.1007/s10895-023-03356-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03356-3

Keywords

Navigation