Skip to main content
Log in

Ground and Excited State Dipole Moments of Metformin Hydrochloride using Solvatochromic Effects and Density Functional Theory

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this research, the ground (µg) and excited (µe) state dipole moments of metformin hydrochlorides were determined using Lippert-Mataga, Bakhshiev's, Kawski-Chamma-Viallet, and Reichardt models from fluorescence emission and UV-Vis absorption spectra in various solvents. From solvatochromic effects the calculated excited (µe ) dipole moment of metformin hydrochloride were, 8.55 D, 8.34 D, 6.08 D, and 6.40 D using the Lippert-Mataga, Bakhshiev's, Kawski-Chamma-Viallet and Reichardt models respectively. The results also indicated that the dipole moment at the ground state is smaller than the excited state. This is due to solvent polarity having a stronger effect on fluorescence emission than absorption spectra. Similarly, from density functional theory, the calculated ground and excited states dipole moments of metformin hydrochloride using (DFT-B3LYP- 3-21+G*(μ= 10.02 D and μ= 11.94 D), DFT-B3LYP- 6-31+G (d, p) (μ= 8.44 D and μ= 10.87 D), and DFT-B3LYP- 6-311+G (d, p) (μ= 8.24 D and μ= 18.74 D)) analyzed by Gaussian 09W. From the optimized geometry of the molecule, the HOMO-LUMO energy band gap of metformin hydrochloride were computed using DFT [DFT-B3LYP- 3-21+G*(5.51 eV), DFT-B3LYP- 6-31+G (d, p) (5.66 eV), and DFT-B3LYP- 6-311+G (d, p) (5.70 eV)] respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All datasets generated in this study can be recovered from information accessible inside the article

References

  1. Xiong W et al (2021) Metformin liposome-mediated PD-L1 downregulation for amplifying the photodynamic immunotherapy efficacy. ACS Appl Mater Interfaces 13:8026–8041. https://doi.org/10.1021/acsami.0c21743

    Article  CAS  PubMed  Google Scholar 

  2. Polyakova EB, Sabirzyanov DR, Prozorova NA, Foteeva AB (2022) Physicochemical Properties and Methods for the determination of Metformin Hydrochloride (A Review). Pharm Chem J 55(10):1119–1125. https://doi.org/10.1007/s11094-021-02546-2

    Article  CAS  Google Scholar 

  3. Szekalska M, Sosnowska K, Zakrzeska A, Kasacka I, Lewandowska A, Winnicka K (2017) The influence of chitosan cross-linking on the properties of alginate microparticles with metformin hydrochloride - in vitro and in vivo evaluation. Molecules 22(1):182. https://doi.org/10.3390/molecules22010182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saini N, Yang X (2018) Metformin as an anti-cancer agent: actions and mechanisms targeting cancer stem cells. Acta Biochim Biophys Sin (Shanghai) 50(2):133–143. https://doi.org/10.1093/abbs/gmx106

    Article  CAS  PubMed  Google Scholar 

  5. Ahn HK, Lee YH, Koo KC (2020) Current status and application of metformin for prostate cancer: a comprehensive review. Int J Mol Sci 21(22):1–18. https://doi.org/10.3390/ijms21228540

    Article  CAS  Google Scholar 

  6. Podhorecka M (2021) Metformin - its anti-cancer effects in hematologic malignancies. Oncol Rev 15(1). https://doi.org/10.4081/oncol.2021.514

  7. Bai B, Chen H (2021) Metformin: a Novel Weapon against inflammation. Front Pharmacol 12:1–12. https://doi.org/10.3389/fphar.2021.622262

    Article  CAS  Google Scholar 

  8. Kristófi R, Eriksson JW (2021) Metformin as an anti-inflammatory agent: A short review. J. Endocrinol 251(2):R11–R22. https://doi.org/10.1530/JOE-21-0194

    Article  PubMed  Google Scholar 

  9. Wang JC et al (2018) Metformin’s antitumour and anti-angiogenic activities are mediated by skewing macrophage polarization. J Cell Mol Med 22(8):3825–3836. https://doi.org/10.1111/jcmm.13655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma R, Yi B, Riker AI, Xi Y (2020) Metformin and cancer immunity. Acta Pharmacol Sin 41(11):1403–1409. https://doi.org/10.1038/s41401-020-00508-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Soukas AA, Hao H, Wu L (2019) Metformin as Anti-Aging Therapy: is it for everyone? Trends Endocrinol Metab 30(10):745–755. https://doi.org/10.1016/j.tem.2019.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu C et al (2022) Determination and correlation of solubility of Metformin Hydrochloride in Aqueous Binary solvents from 283.15 to 323.15 K. ACS Omega 7(10):8591–8600. https://doi.org/10.1021/acsomega.1c06468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B (2014) Metformin: from mechanisms of action to therapies. Cell Metab 20:953–966. https://doi.org/10.1016/j.cmet.2014.09.018

    Article  CAS  PubMed  Google Scholar 

  14. Woldegiorges K, Belay A, Kebede A, Abebe T (2021) Estimating the ground and excited state dipole moments of levofloxacin and norfloxacin drugs using Solvatochromic Effects and computational work. J Spectrosc 2021:1. https://doi.org/10.1155/2021/7214182

    Article  CAS  Google Scholar 

  15. Madar M (2022) Effect of D- π -A substituted bromomethylcoumarin derivatives on Optoelectronic Properties: experimental and computational studies. 1–20

  16. Muddapur GV, Patil NR, Patil SS, Melavanki RM, Kusanur RA (2014) Estimation of ground and excited state dipole moments of aryl boronic acid derivative by solvatochromic shift method. J Fluoresc 24(6):1651–1659. https://doi.org/10.1007/s10895-014-1452-6

    Article  CAS  PubMed  Google Scholar 

  17. Paper O (2015). Time-dependent density functional theory calculations of the solvatochromism of some azo sulfonamide fluorochromes. https://doi.org/10.1007/s00894-015-2651-z

    Article  Google Scholar 

  18. Belay A, Libnedengel E, Kim HK, Hwang YH (2016) Effects of solvent polarity on the absorption and fluorescence spectra of chlorogenic acid and caffeic acid compounds: determination of the dipole moments. Luminescence 31(1):118–126. https://doi.org/10.1002/bio.2932

    Article  CAS  PubMed  Google Scholar 

  19. Raab MT, Prýmek AK, Giordano AN (2021) Estimation of the ground and excited state dipole moments for ibuprofen and naproxen sodium using the solvatochromic shift method

  20. Thiaré DD et al (2015) Determination of ground and excited state dipole moments of amino-benzimidazole by solvatochromic shift methods and theoretical calculations. J Mol Liq 211:640–646. https://doi.org/10.1016/j.molliq.2015.07.071

    Article  CAS  Google Scholar 

  21. Sıdır YG (2015) Part “Spectrochimica a molecular and biomolecular spectroscopy estimation of ground and excited state dipole moments of Oil Red O by solvatochromic shift methods. 135:560–567. https://doi.org/10.1016/j.saa.2014.07.049

  22. Tiwari K, Arora P, Pandey N, Pandey P, Joshi HC, Pant S (2014) Experimental and computational approaches on dipole moment of 5-aminoisoquinoline. J. Mol. Liq 200, no. PB:460–464. https://doi.org/10.1016/j.molliq.2014.10.027

    Article  CAS  Google Scholar 

  23. Wilke J, Wilke M, Meerts WL, Schmitt M (2016) Determination of ground and excited state dipole moments via electronic Stark spectroscopy: 5-methoxyindole. J Chem Phys 144(4):044201. https://doi.org/10.1063/1.4940689

    Article  CAS  PubMed  Google Scholar 

  24. Lippert E (1955) Dipolmoment und Elektronenstruktur von angeregten Molekülen. Z fur Naturforsch - Sect J Phys Sci 10(7):541–545. https://doi.org/10.1515/zna-1955-0707

    Article  Google Scholar 

  25. Bakhshiev NG (1964) Universal Intermolecular interactions and their effect on the position of the Electronic Spectra of Molecules in two-component solutions. VII. Theory (General Case of an isotropic solution). Opt Spectrosc 16:446

  26. Chamma A, Viallet P (1970) Determination du moment dipolaire d’une molecule dans un etat excite singulet. CR Acad Sci Paris Ser C 270:1901–1904

    CAS  Google Scholar 

  27. Ravi M, Soujanya T, Samanta A, Radhakrishnan TP (1995) Excited-state dipole moments of some coumarin dyes from a solvatochromic method using the solvent polarity parameter, E. J Chem Soc Faraday Trans 91(17):2739–2742. https://doi.org/10.1039/FT9959102739

    Article  Google Scholar 

  28. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94(8):2319–2358. https://doi.org/10.1021/cr00032a005

    Article  CAS  Google Scholar 

  29. Sidir YG (2020) The solvatochromism, electronic structure, electric dipole moments and DFT calculations of benzoic acid liquid crystals. Liq Cryst 47(10):1435–1451. https://doi.org/10.1080/02678292.2020.1733685

    Article  CAS  Google Scholar 

  30. Bozkurt E, Gül HI, Tuǧrak M (2017) Investigation of solvent effect on photophysical properties of some sulfonamides derivatives. Turkish J Chem 41(2):282–293. https://doi.org/10.3906/kim-1604-61

    Article  CAS  Google Scholar 

  31. Shkoor M, Mehanna H, Shabana A, Farhat T, Bani-Yaseen AD (2020) Experimental and DFT/TD-DFT computational investigations of the solvent effect on the spectral properties of nitro substituted pyridino[3,4-c]coumarins. J Mol Liq 313:113509. https://doi.org/10.1016/j.molliq.2020.113509

    Article  CAS  Google Scholar 

  32. Airinei A, Isac DL, Homocianu M, Cojocaru C, Hulubei C (2017) Solvatochromic analysis and DFT computational study of an azomaleimide derivative. J Mol Liq 240:476–485. https://doi.org/10.1016/j.molliq.2017.05.096

    Article  CAS  Google Scholar 

  33. Manohara SR, Kumar VU, Shivakumaraiah, Gerward L (2013) Estimation of ground and excited-state dipole moments of 1, 2-diazines by solvatochromic method and quantum-chemical calculation. J Mol Liq 181:97–104. https://doi.org/10.1016/j.molliq.2013.02.018

    Article  CAS  Google Scholar 

  34. Krawczyk P, Bratkowska M, Wybranowski T, Hołyńska-Iwan I, Cysewski P, Jędrzejewska B (2020) Experimental and theoretical insight into spectroscopic properties and bioactivity of 4-(4-formylbenzylidene)-2-phenyloxazol-5(4H)-one dye for future applications in biochemistry. J Mol Liq 314:113632. https://doi.org/10.1016/j.molliq.2020.113632

    Article  CAS  Google Scholar 

  35. Patil V, Padalkar VS, Sekar N, Patil SV, Rajput J (2019) Synthesis of 2-methyl-5-(5-phenyl substituted-1,3,4 oxadiazole-2-yl) quinazolin-4-one fluorescent brightening agent: computational and experimental comparison of photophysical structure. J Mol Struct 1182:150–157. https://doi.org/10.1016/j.molstruc.2019.01.039

    Article  CAS  Google Scholar 

  36. Painagoni KM, Patil HD (2013) “Estimation of Ground and Excited State Dipole Moments of Some Laser Dyes,” J. Eng. Res. Appl. www.ijera.com, vol. 3, pp. 641–647, Accessed: Oct. 09, 2021. [Online]. Available: www.ijera.com

  37. Gülseven Sidir Y, Sidir I (2013) Solvent effect on the absorption and fluorescence spectra of 7-acetoxy-6-(2,3-dibromopropyl)-4,8-dimethylcoumarin: determination of ground and excited state dipole moments. Spectrochim Acta - Part A Mol Biomol Spectrosc 102:286–296. https://doi.org/10.1016/j.saa.2012.10.018

    Article  CAS  Google Scholar 

  38. Patil MK, Kotresh MG, Inamdar SR (2019) A combined solvatochromic shift and TDDFT study probing solute-solvent interactions of blue fluorescent Alexa Fluor 350 dye: evaluation of ground and excited state dipole moments. Spectrochim Acta - Part A Mol Biomol Spectrosc 215:142–152. https://doi.org/10.1016/j.saa.2019.02.022

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Adama Science and Technology University for its support during this research work.

Author information

Authors and Affiliations

Authors

Contributions

Semahegn Asemare: Conceptualization, Analysis, Writing & editing, Writing original draft of manuscript. Abebe Belay: Conceptualization, give resources, Supervision, Reviewing & editing manuscript. Alemu Kebede: Supervision, Reviewing & editing manuscript. Umer Sherfedin: Reviewing & editing manuscript.

Corresponding authors

Correspondence to Semahegn Asemare or Abebe Belay.

Ethics declarations

Ethical Approval

Not applicable as the study does not include any use of animals and humans.

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asemare, S., Belay, A., Kebede, A. et al. Ground and Excited State Dipole Moments of Metformin Hydrochloride using Solvatochromic Effects and Density Functional Theory. J Fluoresc 34, 1207–1217 (2024). https://doi.org/10.1007/s10895-023-03355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03355-4

Keywords

Navigation