Skip to main content
Log in

Synthesis and Characterisation of SrAl2O4: Eu3+ Orange-Red Emitting Nanoparticles

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The current study involves the synthesis and characterisation of europium doped strontium aluminate nanophosphors using the solid-state reaction method with varying concentrations of europium. The existence of the SrAl2O4 phase in all samples was verified using X-ray diffraction and FTIR analysis. The lattice parameters as well as phase fractions were determined using Rietveld refinement. Surface morphology was studied using field emission scanning electron microscope. Using the Tauc plot method acquired from the diffuse reflectance spectra, the band gaps of the samples were determined and it was found that the doped samples possess lower band gaps compared to the host. Our findings demonstrate that these nanophosphors exhibiting bright orange-red emission under UV excitation with quantum efficiency 70.68%, can be applied for display and fluorescence imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are not publicly available, but are available from the corresponding author on reasonable request.

References

  1. Van der Heggen D, Joos JJ, Feng A, Fritz V, Delgado T, Gartmann N, Walfort B, Rytz D, Hagemann H, Poelman D, Viana B, Smet PF (2022) Persistent luminescence in Strontium Aluminate: a Roadmap to a brighter future. Adv Funct Mater 32:2208809. https://doi.org/10.1002/adfm.202208809

    Article  CAS  Google Scholar 

  2. Ju H, Liu J, Wang B, Tao X, Ma Y, Xu S (2013) Bi3+-doped Sr3Al2O6: an unusual color-tunable phosphor for solid state lighting. Ceram Int 39(1):857–860. https://doi.org/10.1016/j.ceramint.2012.05.106

    Article  CAS  Google Scholar 

  3. Jamalaiah BC, Ramesh Babu Y (2018) Near UV excited SrAl2O4:Dy3+ phosphors for white LED applications. Mater Chem Phys 211:181–191. https://doi.org/10.1016/j.matchemphys.2018.02.025

    Article  CAS  Google Scholar 

  4. Ashwini KR et al (2021) Green emitting SrAl2O4:Tb3+ nano-powders for forensic, anti-counterfeiting and optoelectronic devices. Inorg Chem Commun 130:108665. https://doi.org/10.1016/j.inoche.2021.108665. February

    Article  CAS  Google Scholar 

  5. Benítez Guerrero NS, Rolón Rodríguez YM, Peña Rodríguez G (2046) “Use of strontium aluminate powders in the photocatalytic removal of dyes present in water,” J. Phys. Conf. Ser, vol. no. 1, pp. 0–6, 2021, https://doi.org/10.1088/1742-6596/2046/1/012042

  6. Calatayud DG et al (2022) Biocompatible Probes based on rare-earth Doped Strontium Aluminates with long-lasting Phosphorescent Properties for in Vitro Optical imaging. Int J Mol Sci 23(6). https://doi.org/10.3390/ijms23063410

  7. Zhang J, Zhang X, Shi J, Gong M (2011) Luminescent properties of green- or red-emitting Eu2+doped Sr3Al2O6 for LED. J Lumin 131(12):2463–2467. https://doi.org/10.1016/j.jlumin.2011.05.064

    Article  CAS  Google Scholar 

  8. Wang L et al (2016) Enhancing photovoltaic performance of dye-sensitized solar cells by rare-earth doped oxide of SrAl2O4:Eu3+. Mater Res Bull 76:459–465. https://doi.org/10.1016/j.materresbull.2016.01.013

    Article  CAS  Google Scholar 

  9. Salehabadi A, Salavati-Niasari M, Gholami T (2018) Green and facial combustion synthesis of Sr3Al2O6 nanostructures; a potential electrochemical hydrogen storage material. J Clean Prod 171:1–9. https://doi.org/10.1016/j.jclepro.2017.09.250

    Article  CAS  Google Scholar 

  10. Rojas-Hernandez RE, Rodriguez MA, Fernandez JF (2015) Role of the oxidizing agent to complete the synthesis of strontium aluminate based phosphors by the combustion method. RSC Adv 5(4):3104–3112. https://doi.org/10.1039/c4ra10460a

    Article  CAS  Google Scholar 

  11. Page P, Ghildiyal R, Murthy KVR (2006) Synthesis, characterisation and luminescence of Sr3Al2O6 phosphor with trivalent rare earth dopant. Mater Res Bull 41(10):1854–1860. https://doi.org/10.1016/j.materresbull.2006.03.012

    Article  CAS  Google Scholar 

  12. Vitola V et al (2020) The boron effect on low temperature luminescence of SrAl2O4:Eu, Dy. Ceram Int 46(16):26377–26381. https://doi.org/10.1016/j.ceramint.2020.01.208

    Article  CAS  Google Scholar 

  13. Bierwagen J et al (2019) “Probing traps in the persistent phosphor SrAl2O4:Eu2+,Dy3+,B3+ - A wavelength, temperature and sample dependent thermoluminescence investigation,” J. Lumin, vol. 222, no. p. 117113, 2020, https://doi.org/10.1016/j.jlumin.2020.117113

  14. Vitola V, Millers D, Smits K, Bite I, Zolotarjovs A (2019) “The search for defects in undoped SrAl2O4 material,” Opt. Mater. (Amst), vol. 87, no. February, pp. 48–52, https://doi.org/10.1016/j.optmat.2018.06.004

  15. Zhang P, Li L, Xu M, Liu L (2008) The new red luminescent Sr3Al2O6:Eu2+ phosphor powders synthesized via sol-gel route by microwave-assisted. J Alloys Compd 456:1–2. https://doi.org/10.1016/j.jallcom.2007.02.004

    Article  CAS  Google Scholar 

  16. Sanad MMS, Rashad MM (2016) Tuning the structural, optical, photoluminescence and dielectric properties of Eu2+-activated mixed strontium aluminate phosphors with different rare earth co-activators. J Mater Sci Mater Electron 27(9):9034–9043. https://doi.org/10.1007/s10854-016-4936-0

    Article  CAS  Google Scholar 

  17. Kostova MH, Zollfrank C, Batentschuk M, Goetz-Neunhoeffer F, Winnacker A, Greil P (2009) Bioinspired design of SrAl2O4:Eu2+ phosphor. Adv Funct Mater 19(4):599–603. https://doi.org/10.1002/adfm.200800878

    Article  CAS  Google Scholar 

  18. Patterson AL (1939) The scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982. https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  19. Pires AM, Davolos MR (2001) Barium and Zinc Orthosilicate. Chem Mater 13(1):21–27

    Article  CAS  Google Scholar 

  20. Wei KongBoLiuBoYeZhongpingYuHua (2011) Wang,Guodong Qian,and Zhiyu Wang,“An Experimental Study on the Shape Changes of TiO2 Nanocrystals Synthesized by Microemulsion-Solvothermal Method. J ofNanomaterials Volume 467083. https://doi.org/10.1155/2011/467083

  21. Chroma M, Pinkas J, Pakutinskiene I, Beganskiene A, Kareiva A (2005) Processing and characterisation of sol-gel fabricated mixed metal aluminates. Ceram Int 31(8):1123–1130. https://doi.org/10.1016/j.ceramint.2004.11.012

    Article  CAS  Google Scholar 

  22. Zhu Y, Zheng M, Zeng J, Xiao Y, Liu Y (2009) Luminescence enhancing encapsulation for strontium aluminate phosphors with phosphate. 113:721–726. https://doi.org/10.1016/j.matchemphys.2008.08.007

  23. Singh V et al (2009) Characterisation, luminescence and EPR investigations of Eu2+ activated strontium aluminate phosphor. J Non Cryst Solids 355:50–51. https://doi.org/10.1016/j.jnoncrysol.2009.08.027

    Article  CAS  Google Scholar 

  24. Li Z, Hao S, Ji W, Hao L, Yin L, Xu X (2021) Mechanism of long afterglow in SrAl 2O4: Eu phosphors. Ceram Int no August. https://doi.org/10.1016/j.ceramint.2021.08.193

    Article  Google Scholar 

  25. Binnemans (2015) “Interpretation of europium(III) spectra”, Coordination Chemistry Reviews, Volume 295, Pages 1–45, ISSN 0010-8545, doihttps://doi.org/10.1016/j.ccr.2015.02.015

  26. Escobedo-Morales A, Ruiz-López II, Ruiz-Peralta MdeL, Tepech-Carrillo L, Sánchez-Cantú M, Moreno-Orea JE (2019) Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy. Heliyon 5(4):1–19. https://doi.org/10.1016/j.heliyon.2019.e01505

    Article  CAS  Google Scholar 

  27. Fu Z, Zhou S, Pan T, Zhang S (2005) Band structure calculations on the monoclinic bulk and nano-SrAl 2O4 crystals. J Solid State Chem 178(1):230–233. https://doi.org/10.1016/j.jssc.2004.11.032

    Article  CAS  Google Scholar 

  28. Hölsä J, Laamanen T, Lastusaari M, Niittykoski J, Novák P (Aug. 2009) Electronic structure of the SrAl2O4:Eu2+ persistent luminescence material. J Rare Earths 27(4):550–554. https://doi.org/10.1016/S1002-0721(08)60286-0

  29. Piprek J (2003) “Electron Energy Bands,” Semicond. Optoelectron. Devices, pp. 13–48, https://doi.org/10.1016/b978-0-08-046978-2.50027-2

  30. Dexter DL, Schulman JH (1954) Theory of concentration quenching in inorganic phosphors. J Chem Phys 22:1063–1070. https://doi.org/10.1063/1.1740265

    Article  CAS  Google Scholar 

  31. Safeera TA, Anila EI (2018) “Synthesis and characterization of ZnGa2O4:Eu3+ nanophosphor by wet chemical method”,Scripta Materialia, Volume 143, Pages 94–97, ISSN 1359–6462, doi.: https://doi.org/10.1016/j.scriptamat.2017.09.021

  32. López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61(1):1–7. https://doi.org/10.1007/s10971-011-2582-9

    Article  CAS  Google Scholar 

  33. Bindu KR, Safeera TA, Anila EI (2022) Pure red luminescence and concentration-dependent tunable emission color from europium-doped zinc sulfide nanoparticles. J Mater Sci: Mater Electron 33:17793–17801. https://doi.org/10.1007/s10854-022-08644-5

    Article  CAS  Google Scholar 

  34. Nogami M, Enomoto T, Hayakawa T (2002) Enhanced fluorescence of Eu3+ induced by energy transfer from nanosized SnO2 crystals in glass. J Lumin 97:3–4. https://doi.org/10.1016/S0022-2313(02)00217-X

    Article  Google Scholar 

  35. Tsai BS, Chang YH, Chen YC (2005) Synthesis and luminescent properties of MgIn2 – xGaxO4Eu3+ phosphors. Electrochem Solid-State Lett 8(7):55–57. https://doi.org/10.1149/1.1921128

    Article  CAS  Google Scholar 

  36. Rekha S, Anila EI (2019) Intense yellow emitting Biocompatible CaS:Eu Nanophosphors synthesized by Wet Chemical Method. J Fluoresc 29:673–682. https://doi.org/10.1007/s10895-019-02375-3

    Article  CAS  PubMed  Google Scholar 

  37. Huang YM, Ma Qing-lan (2015) Long afterglow of trivalent dysprosium doped strontium aluminate. J Lumin 160:271–275. https://doi.org/10.1016/j.jlumin.2014.12.042

    Article  CAS  Google Scholar 

  38. Thomas NM, Sreeja VG, Vanchipurackal IV, Anila EI (2020) Structural and linear optical properties of blue light emitting Sr3Al2O6. AIP Conf Proc 2265:030141. https://doi.org/10.1063/5.0016980

Download references

Funding

The authors acknowledge instrumentation support of CLIF, Kerala University. The authors declare that no other funds, grants were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors collectively contributed to the conception and design of the study. Anila E I and Neenu Mary Thomas were responsible for the conceptualization. Neenu Mary Thomas conducted the material preparation, data collection, and analysis. The initial draft of the manuscript was prepared by Neenu Mary Thomas, and E. I Anila provided valuable feedback, reviewed, and edited the manuscript. All authors have thoroughly read and approved the final version of the manuscript.

Corresponding author

Correspondence to E I Anila.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

This declaration is not applicable.

Consent to Participate

This declaration is not applicable.

Consent to Publish

This declaration is not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, N.M., Anila, E.I. Synthesis and Characterisation of SrAl2O4: Eu3+ Orange-Red Emitting Nanoparticles. J Fluoresc 34, 1161–1169 (2024). https://doi.org/10.1007/s10895-023-03351-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03351-8

Keywords

Navigation