Skip to main content

Advertisement

Log in

Highly Selective Turn-on Fluorescence Sensor for Cd2+ Ions by Tripodal Organic Ligand

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Organic fluorescence sensor for selectively detecting and quantifying toxic heavy metal ions has received significant interest due to their environmental hazards. Herein, we have designed and synthesized a simple tripodal Schiff base ligand (1) based on hydroxy-naphthaldehyde and tris(2-aminoethyl)amine (TREN) and demonstrated highly selective turn-on fluorescence sensing of Cd2+ ions. The free ligand did not show any fluorescence in DMF. In contrast, Cd2+ (10− 4 M) addition exhibited a strong enhancement of fluorescence at 450 nm. Interestingly, other metal ions including Zn2+, which exhibit similar chemistry, did not show any turn-on fluorescence. The concentration-dependent studies of 1 with Cd2+ showed the detection limit of 6.78 × 10− 8 M. NMR spectra of 1 with Cd2+ and computational studies were performed to understand the mechanism of sense.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The manuscript data is available with the corresponding authors and the same is available upon request.

References

  1. Rasheed T, Bilal M, Nabeel F, Iqbal HMN, Li C, Zhou Y (2018) Fluorescent sensor-based models for the detection of environmentally-related toxic heavy metals. Sci Total Environ 615:476–485. https://doi.org/10.1016/j.scitotenv.2017.09.126

    Article  CAS  PubMed  Google Scholar 

  2. Saleem M, Lee KH (2015) Optical sensor: a promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv 5:72150–72287. https://doi.org/10.1039/C5RA11388A

    Article  CAS  Google Scholar 

  3. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40. https://doi.org/10.1016/S0010-8545(00)00246-0

    Article  CAS  Google Scholar 

  4. De Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, Mc Coy CP (1997) Signalling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566. https://doi.org/10.1021/cr960386p

    Article  PubMed  Google Scholar 

  5. Xu Z, Li G, Ren YY et al (2016) Selective fluorescent probe for the detection of Cd2+ in different buffer solutions and water. Dalton Trans 45:12087–12093. https://doi.org/10.1039/C6DT01398H

    Article  CAS  PubMed  Google Scholar 

  6. Chaney RL, Ryan JA, Li YM, Brown SL (1999) In: McLaughlin MJ, Singh BR (eds) Cadmium in soils and plants. Kluwer Boston, pp 219–256

  7. Kim HN, Ren WX, Kim JS, Yoon J (2011) Fluorescent and colorimetric sensors for detection of lead cadmium, and mercury ions. Chem Soc Rev 41:3210–3244. https://doi.org/10.1039/C1CS15245A

    Article  PubMed  Google Scholar 

  8. Waisberg M, Joseph P, Hale P, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117. https://doi.org/10.1016/s0300-483x.(03)00305-6

  9. Akesson A, Julin B, Wolk A (2008) Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer Res 68(15):6435–6441. https://doi.org/10.1158/0008-5472.CAN-08-0329

    Article  CAS  PubMed  Google Scholar 

  10. Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol and Appl Pharmacol 204(3):274–308. https://doi.org/10.1016/j.taap.2004.09.007

    Article  CAS  Google Scholar 

  11. Cadmium (2008) Guidelines for drinking-water quality, vol 1. WHO, Geneva, pp 317–319

    Google Scholar 

  12. Baba H, Tsuneyama K, Yazaki M et al (2013) The liver in itai-itai disease (chronic cadmium poisoning): pathological features and metallothionein expression. Mod Pathol 26(9):1228–1234. https://doi.org/10.1038/modpathol.2013.62

    Article  CAS  PubMed  Google Scholar 

  13. Aoshima K (2016) Itai-itai disease: renal tubular osteomalacia induced by environmental exposure to cadmium-historical review and perspectives. Soil Sci Plant Nutr 62(4):1–8. https://doi.org/10.1080/00380768.2016.1159116

    Article  CAS  Google Scholar 

  14. Zhu H, Tan X, Tan L et al (2018) Magnetic porous polymers prepared via high internal phase emulsions for efficient removal of Pb2+ and Cd2+. ACS Sustain Chem Eng 6(4):5206–5213. https://doi.org/10.1021/acssuschemeng.7b04868

    Article  CAS  Google Scholar 

  15. Wang W, Wu M, Liu H, Liu Q, Gao Y, Zhao B (2019) A novel on-off-on fluorescent chemosensor for relay detection of Fe3+ and PPi in aqueous solution and living cells. Tet Lett 60(25):1631–1635. https://doi.org/10.1016/j.tetlet.2019.05.015

    Article  CAS  Google Scholar 

  16. Wang S, Ma L, Liu G, Pu S (2019) Diarylethene-based fluorescent and colourimetric chemosensor for the selective detection of Al3+ and CN. Dyes Pigm 164:257–266. https://doi.org/10.1016/j.dyepig.2019.01.029

    Article  CAS  Google Scholar 

  17. Hariharan PS, Anthony SP (2014) Selective turn-on fluorescence for Zn2+ and Zn2+ + Cd2+ metal ions by single Schiff base chemosensor. Anal Chim Acta 848:74–79. https://doi.org/10.1016/j.aca.2014.07.042

    Article  CAS  PubMed  Google Scholar 

  18. Kundu A, Hariharan PS, Prabakaran K, Anthony SP (2015) Developing new Schiff base molecules for selective colorimetric sensing of Fe3+ and Cu2+ metal ions: Substituent dependent selectivity and colour change. Sens Actuators B 206:524–530. https://doi.org/10.1016/j.snb.2014.09.099

    Article  CAS  Google Scholar 

  19. Wang JH, Liu YM, Chao JB et al (2020) A simple but efficient fluorescent sensor for ratiometric sensing of Cd2+ and bioimaging studies. Sens Actuators B 303:127216–112722. https://doi.org/10.1016/j.snb.2019.127216

  20. Chithiraikumar S, Balakrishnan C, Neelakantan MA (2017) Tuning ligand vicinity towards the development of “turn-on” fluorescence for cadmium(II) ions under physiological pH and bioimaging. Sens Actuators B 249:235–245. https://doi.org/10.1016/j.snb.2017.04.106

    Article  CAS  Google Scholar 

  21. Sun J, Ye B, Xia G, Wang H (2017) A multi-responsive squaraine-based “turn on” fluorescent chemosensor for highly sensitive detection of Al3+, Zn2+ and Cd2+ in aqueous media and its biological application. Sens Actuators B 249:386–394. https://doi.org/10.1016/j.snb.2017.03.134

    Article  CAS  Google Scholar 

  22. Liu H, Cui S, Shi F, Pu S (2018) A diarylethene-based multi-functional sensor for fluorescent detection of Cd2+ and colorimetric detection of Cu2+. Dyes Pigm 161:34–43. https://doi.org/10.1016/j.dyepig.2018.09.030

    Article  CAS  Google Scholar 

  23. Garau A, Lvova L, Macedi E et al (2020) N2S2 pyridinophane-based fluorescent chemosensors for selective optical detection of Cd2+ in soils. New J Chem 44:20834–20852. https://doi.org/10.1039/D0NJ03858J

    Article  CAS  Google Scholar 

  24. Bhagat DS, Pawar RP, Tekale AB et al (2019) Green synthesis of an amide-based chemosensor and its application for detection of toxic metal ions. Eur Chem Bull 8(9):212–215. https://doi.org/10.17628/ecb.2019.8.212-215

    Article  CAS  Google Scholar 

  25. Wan X, Ke H, Tang J et al (2019) Acid environment-improved fluorescence sensing performance: a quinoline Schiff base-containing sensor for Cd2+ with high sensitivity and selectivity. Talanta 199:8–13. https://doi.org/10.1016/j.talanta.2019.01.101

    Article  CAS  PubMed  Google Scholar 

  26. Ravichandiran P, Czubara AB, Masłyk M et al (2019) A phenoxazine-based fluorescent Chemosensor for Dual Channel detection of Cd2+ and CN ions and its application to Bio-Imaging in Live cells and zebrafish. Dyes Pigm 172:107828–107835. https://doi.org/10.1016/j.dyepig.2019.107828

    Article  CAS  Google Scholar 

  27. Park S, Kim H-J (2012) Reaction-based chemosensor for the reversible detection of cyanide and cadmium ions. Sens Actuators B 168:376–380. https://doi.org/10.1016/j.snb.2012.04.040

    Article  CAS  Google Scholar 

  28. Kumar AS, Ahmed N (2017) Coumarin–chalcone hybrid as a selective and sensitive colorimetric and turn-on fluorometric sensor for Cd2+ detection. New J Chem 41:14746–14753. https://doi.org/10.1039/C7NJ02569F

    Article  Google Scholar 

  29. Khan SA, Ullah Q, Almalki ASA et al (2021) Synthesis and photophysical investigation of (BTHN) Schiff base as off-on Cd2+ fluorescent chemosensor and its live cell imaging. J Mol Liquids 328:115407–115414. https://doi.org/10.1016/j.molliq.2021

    Article  CAS  Google Scholar 

  30. Hassan HB (2014) Density function theory B3LYP/6-31G**Calculation of geometry optimization and energies of Donor-Bridge-Acceptor molecular system. Int J Curr Engg Tech 4(4):2342–2345 (E-ISSN)

    Google Scholar 

  31. Bourass M, Benjelloun AT, Benzakour M et al (2016) DFT and TD-DFT calculation of new thienopyridine-based small molecules for organic solar cells. Chem Cent J 10(67):1–12. https://doi.org/10.1186/s13065-016-0216-6

    Article  CAS  Google Scholar 

  32. Eroshin AV, Otlyotov AA, Kuzmin IA et al (2022) DFT study of the molecular and electronic structure of metal-free tetrabenzoporphyrin and its metal complexes with Zn, Cd, Al, Ga. Int J Mol Sci 23(2):939–951. https://doi.org/10.3390/ijms23020939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Guo XF, Zheng LB, Jia LH (2017) A novel red-emission sulfonamidoquinoline-based sensor with visible excitation for sensing group IIB cations. J Lumin 188:283–288. https://doi.org/10.1016/j.jlumin.2017.04.039

    Article  CAS  Google Scholar 

  34. Ding XH, Zhang FF, Bai YJ, Zhao JX, Chen X, Ge M, Sun W (2017) Quinoline-based highly selective and sensitive fluorescent probe specific for Cd2 + detection in mixed aqueous media. Tetrahedron Lett 58:3868–3874. https://doi.org/10.1016/j.tetlet.2017.08.068

    Article  CAS  Google Scholar 

  35. Lu ZN, Wang L, Zhang X, Zhu ZJ (2019) A selective fluorescent chemosensor for Cd2+ based on 8-hydroxylquinoline-benzothiazole conjugate and imaging application. Spectrochim Acta Part A 213:57–63. https://doi.org/10.1016/j.saa.2019.01.041

    Article  CAS  Google Scholar 

  36. Li SL, Cao DL, Ma WB et al (2020) A simple fluorescent probe for detection of Ag+ and Cd2+ and its Cd2+ complex for sequential recognition of S2–. RSC Adv 10:18434–18439. https://doi.org/10.1039/D0RA01768J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xiao Y, Ma J, Li DH, Liu L, Wang HL (2020) Preparation 4’-Quinolin-2-yl-[2, 2’; 6’, 2”] terpyridine as a ratiometric fluorescent probe for cadmium ions and zinc ions in aqueous. J Photochem Photobiol A 399:112613. https://doi.org/10.1016/j.jphotochem.2020.112613

  38. Paul S, Banerjee P (2021) An ESIPT based turn on fluorochromogenic sensor for low level discrimination of chemically analogous Zn2+ and Cd2+ & aqueous phase recognition of bio-hazardous CN: from solution state analysis to prototype fabrication. Sens Actuators B 329:129172. https://doi.org/10.1016/j.snb.2020.129172

    Article  CAS  Google Scholar 

  39. Inal EK (2020) A fluorescent Chemosensor based on Schiff Base for the determination of Zn2+, Cd2+ and Hg2+. J Fluoresc 30:891–900. https://doi.org/10.1007/s10895-021-02818-w

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Financial support from the Science and Engineering Research Board (SERB), Core Research grant (CRG) (CRG/2020/003978) and DST-FIST (SR/FST/CS-1/2018/62), New Delhi, India is acknowledged with gratitude. Dr BJ sincerely thanks DST-SERB (File No.: SB/FT/CS-169/2012) and DST-DPRP division [File no: VI-D&P/562/2016-17/TDT (C)].

Author information

Authors and Affiliations

Authors

Contributions

P.M and S. A performed the synthesis and characterization and S.R and P.G carried-out sensing studies and C.E and R.V.S performed theoretical studies and B.J and S.P.A planned the work and wrote the main manuscript.

Corresponding authors

Correspondence to Bhagavathsingh Jebasingh or Savarimuthu Philip Anthony.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muralakar, P., Ravi, S., Gayathri, P. et al. Highly Selective Turn-on Fluorescence Sensor for Cd2+ Ions by Tripodal Organic Ligand. J Fluoresc 34, 1229–1240 (2024). https://doi.org/10.1007/s10895-023-03348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03348-3

Keywords

Navigation