Skip to main content
Log in

Nanomolar Fluorescent Detection of Guanine Using Tin Porphyrin

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

5,10,15,20-tetramethoxyphenylporphyrinatotin (IV) (SnTMPP) was synthesised. SnTMPP exhibited Soret band at 432 nm and emission peaks at 629 and 682 nm. The fluorescence intensity of SnTMPP was quenched in the presence of guanine linearly in the range 4 × 10–9 M to 7.2 × 10–8 M and the quenching response was found to be stable even in the presence of other nucleosides such as adenine, cytosine, uracil, thymine, alanine, aspartic acid and ascorbic acid. The detection limit was found to be 0.17 nM and the mechanism behind the decrease in the fluorescence intensity of SnTMPP in the presence of guanine is due to dynamic quenching, which was confirmed by cyclic voltammetric studies and life time studies. The CV studies illustrates the possibilty for an electron transfer between the guanine and the electron deficient metal core of SnTMPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

The datasets can be made available upon request.

References

  1. Gur D, Palmer BA, Weiner S, Addadi L (2017) Light manipulation by guanine crystals in rganisms: Biogenic scatterers, mirrors, multilayer eflectors and hotonic crystals. Adv Funct Mater 27:1–13. https://doi.org/10.1002/adfm.201603514

    Article  CAS  Google Scholar 

  2. Weber S (2005) Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. Biochim Biophys Acta 707:1–23. https://doi.org/10.1016/j.bbabio.2004.02.010

    Article  CAS  Google Scholar 

  3. Bacolla A, Temiz NA, Yi M, Ivanic J, Cer RZ, Donohue DE, Ball EV, Mudunuri US, Wang G, Jain A, Volfovsky N, Luke BT, Stephens RM, Cooper DN, Collins JR, Vasquez KM (2013) Guanine holes are prominent targets for mutation in cancer and inherited disease. PLOS Genetics 9:1–14. https://doi.org/10.1371/journal.pgen.1003816

    Article  CAS  Google Scholar 

  4. Hunter G (1936) On the hydrolysis of guanine. Biochem J 30:1183–1188. https://doi.org/10.1042/bj0301183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pundir CS, Devi R (2014) Biosensing methods for xanthine determination: A review. Enzyme Microb Technol 57:55–62. https://doi.org/10.1016/j.enzmictec.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  6. Ashihara H, Takasawa Y, Suzuki T (2006) Metabolic fate of guanosine in higher plants. Physiol Plant 100:909–916. https://doi.org/10.1111/j.1399-3054.1997.tb00017.x

    Article  Google Scholar 

  7. Emran MY, Shenashen MA, El-safty SA, Selim MM (2021) Design of porous S-doped carbon nanostructured electrode sensor for sensitive and selective detection of guanine from DNA samples. Microporous Mesoporous Mater 320:111097. https://doi.org/10.1016/j.micromeso.2021.111097

    Article  CAS  Google Scholar 

  8. Wang D, Huang B, Liu J, Guo X, Abudukeyoumu G, Zhang Y, Ye B-C, Li Y (2018) A novel electrochemical sensor based on Cu@Ni/MWCNTs nanocomposite for simultaneous determination of guanine and adenine. Biosens Bioelectron 102:389–395. https://doi.org/10.1016/j.bios.2017.11.051

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Jiang J, Zhao D, Xu Z, Liu M, Liu X, Tong H, Qian D (2020) Novel hierarchical sea urchin-like Prussian blue@palladium core-shell heterostructures supported on nitrogen-doped reduced graphene oxide: Facile synthesis and excellent guanine sensing performance. Electrochim Acta 330:135196. https://doi.org/10.1016/j.electacta.2019.135196

    Article  CAS  Google Scholar 

  10. Zhang S, Zhuang X, Chen D, Luan F, He T, Tian C, Chen L (2019) Simultaneous voltammetric determination of guanine and adenine using MnO2 nanosheets and ionic liquid-functionalized graphene combined with a permeation-selective polydopamine membrane. Microchimica Acta 186:150. https://doi.org/10.1007/s00604-019-3577-4

    Article  CAS  Google Scholar 

  11. Kumar M, Fu Y, Wang M, Swamy BEK, Jayaprakash GK, Zhao W (2021) Influence of cationic surfactant cetyltrimethylammonium bromide for electrochemical detection of guanine, uric acid and dopamine. J Mol Liq 321:114893. https://doi.org/10.1016/j.molliq.2020.114893

    Article  CAS  Google Scholar 

  12. Pang S, Zhang Y, Wu C, Feng S (2016) Fluorescent carbon dots sensor for highly sensitive detection of guanine. Sens Actuators B Chem 222:857–863. https://doi.org/10.1016/j.snb.2015.09.037

    Article  CAS  Google Scholar 

  13. Fu L, Yan L, Wang G, Ren H, Jin L (2019) Photoluminescence enhancement of silver nanoclusters assembled on the layered double hydroxides and their application to guanine detection. Talanta 193:161–167. https://doi.org/10.1016/j.talanta.2018.09.097

    Article  CAS  PubMed  Google Scholar 

  14. Shi H, Cui Y, Gong Y, Feng S (2016) Highly sensitive and selective fluorescent assay for guanine based on the Cu2+/eosin Y system. Spectrochim Acta Part A Mol Biomol Spectrosc 161:150–154. https://doi.org/10.1016/j.saa.2016.02.023

    Article  CAS  Google Scholar 

  15. Xu X, He L, Long Y, Pan S, Liu H, Yang J, Hu X (2019) S-doped carbon dots capped ZnCdTe quantum dots for ratiometric florescence sensing of guanine. Sens Actuators B Chem 279:44–52. https://doi.org/10.1016/j.snb.2018.09.102

    Article  CAS  Google Scholar 

  16. Schiemann O, Turro NJ, Barton JK (2000) EPR detection of guanine radicals in a DNA duplex under biological conditions: selective base oxidation by Ru(phen)2dppz3+ using the flash-quench technique. J Phys Chem B 104:7214–7220. https://doi.org/10.1021/jp000725p

    Article  CAS  Google Scholar 

  17. To W-P, Liu Y, Lau T-C, Che C-M (2013) A robust Palladium (II)–porphyrin complex as catalyst for visible light induced oxidation C-H functionalization. Chem Eur J 19:5654–5664. https://doi.org/10.1002/chem.201203774

    Article  CAS  PubMed  Google Scholar 

  18. Niedziałkowski P, Bogdanowicz R, Zieba P, Wysocka J, Sobaszek M, Ossowski T (2016) Melamine-modified Boron-doped Diamond towards enhanced detection of adenine, guanine and caffeine. Electroanalysis 28:211–221. https://doi.org/10.1002/elan.201500528

    Article  CAS  Google Scholar 

  19. Ladomenou K, Natali M, Iengo E, Charalampidis G, Scandola F, Coutsolelos AG (2015) Photochemical hydrogen generation with porphyrin-based systems. Coord Chem Rev 304–305:38–54. https://doi.org/10.1016/j.ccr.2014.10.001

    Article  CAS  Google Scholar 

  20. Guo C-C, Liu X-Q, Liu Y, Liu Q, Chu M-F, Zhang X-B (2003) Studies of simple µ-oxo-bisiron(III)porphyrin as catalyst of cyclohexane oxidation with air in absence of cocatalysts or coreductants. J Mol Catal A: Chem 192:289–294. https://doi.org/10.1016/S1381-1169(02)00449-1

    Article  CAS  Google Scholar 

  21. Birel O, Nadeem S, Duman H (2017) Porphyrin-based dye-sensitized solar cells (DSSCs): a review. J Fluoresc 27:1075–1085. https://doi.org/10.1007/s10895-017-2041-2

    Article  CAS  PubMed  Google Scholar 

  22. Sternberg ED, Dolphin D (1998) Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron 54:4151–4202. https://doi.org/10.1016/S0040-4020(98)00015-5

    Article  CAS  Google Scholar 

  23. Devi LM, Negi DPS (2011) Sensitive and selective detection of adenine using fluorescent ZnS nanoparticles. Nanotechnology 22:245502. https://doi.org/10.1088/0957-4484/22/24/245502

    Article  CAS  Google Scholar 

  24. Duan R, Li C, Liu S, Liu Z, Li Y, Yuan Y, Hu X (2016) Determination of adenine based on the fluorescence recovery of the L-Tryptophan–Cu2+ complex. Spectrochim Acta Part A Mol Biomol Spectrosc 152:272–277. https://doi.org/10.1016/j.saa.2015.07.003

    Article  CAS  Google Scholar 

  25. Francis S, Rajith L (2021) Selective fluorescent sensing of adenine Via the emissive enhancement of a simple cobalt porphyrin. J Fluoresc 31:577–586. https://doi.org/10.1007/s10895-021-02685-5

    Article  CAS  PubMed  Google Scholar 

  26. Namitha PP, Saji A, Francis S, Rajith L (2020) Water soluble porphyrin for the fluorescent determination of cadmium ions. J Fluoresc 30:527–535. https://doi.org/10.1007/s10895-020-02514-1

    Article  CAS  PubMed  Google Scholar 

  27. Jia H-L, Chen Y-C, Ji L, Lin L-X, Guan M-G, Yang Y (2019) Cosensitization of porphyrin dyes with new x type organic dyes for efficient dye-sensitized solar cells. Dye Pigment 163:589–593. https://doi.org/10.1016/j.dyepig.2018.12.048

    Article  CAS  Google Scholar 

  28. Lu F, Feng Y, Wang X, Zhao Y, Yang G, Zhang J, Zhang B, Zhao Z (2017) Influence of the additional electron-withdrawing unit in β-functionalized porphyrin sensitizers on the photovoltaic performance of dye-sensitized solar cells. Dye Pigment 139:255–263. https://doi.org/10.1016/j.dyepig.2016.12.027

    Article  CAS  Google Scholar 

  29. Francis S, Sunny N, Rajith L (2023) Picomolar selective fluorescent detection of creatinine using porphyrin in aqueous medium. J Photochem Photobiol A Chem 438:114534. https://doi.org/10.1016/j.jphotochem.2022.114534

    Article  CAS  Google Scholar 

  30. Ganguly A, Ghosh S, Kar S, Guchhait N (2015) Selective fluorescence sensing of Cu(II) and Zn(II) using a simple Schiff base ligand: naked eye detection and elucidation of photoinduced electron transfer (PET) mechanism. Spectrochim Acta Part A Mol Biomol Spectrosc 143:72–80. https://doi.org/10.1016/j.saa.2015.02.013

    Article  CAS  Google Scholar 

  31. Gehlen MH (2020) The centenary of the stern-volmer equation of fluorescence quenching : from the single line plot to the SV quenching map. J Photochem Photobiol C Photochem Rev 42:100338. https://doi.org/10.1016/j.jphotochemrev.2019.100338

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to University Grants Commission-Basic Science Research, India, Department of Science and Technology, India, Peformance Linked Encouragement for Academic Studies and Endeavour,Government of Kerala, India, Department of Science and Technology—Fund for Improvement of S&T Infrastructure, India, University Grants Commission-Special Assistance Programme, India and Cochin University of Science and Technology, India for funding. The authors also express their gratitude to Sophisticated Tests and Instrumentation Centre of Cochin University of Science and Technology for analysis.

Funding

The authors are grateful to University Grants Commission-Basic Science Research, India, Department of Science and Technology, India, Peformance Linked Encouragement for Academic Studies and Endeavour,Government of Kerala, India, Department of Science and Technology—Fund for Improvement of S&T Infrastructure, India, University Grants Commission-Special Assistance Programme, India and Cochin University of Science and Technology, India for funding.

Author information

Authors and Affiliations

Authors

Contributions

Shijo Francis – Written the manuscript and experimental investigation. Leena Rajith – Planned and guided the entire work, helped in interpreting the results and writing the manuscript.

Corresponding author

Correspondence to Leena Rajith.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 171 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francis, S., Rajith, L. Nanomolar Fluorescent Detection of Guanine Using Tin Porphyrin. J Fluoresc 34, 1049–1056 (2024). https://doi.org/10.1007/s10895-023-03336-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03336-7

Keyword

Navigation