Skip to main content
Log in

Rapid Colorimetric and Fluorometric Discrimination of Maleic Acid vs. Fumaric Acid and Detection of Maleic Acid in Food Additives

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

An anthracene thiazole based Schiff base L was synthesized and employed for fluorescence switch-on detection of maleic acid in aqueous DMSO. The non-fluorescent L (10–5 M) showed an instantaneous and selective fluorescence enhancement at 506 nm upon interaction with maleic acid (10–5 M). Other potential carboxylic acids (10–5 M), such as malic acid, citric acid, acetic acid, cinnamic acid, tartaric acid, succinic acid, fumaric acid, oxalic acid and malonic acid failed to alter the chromo-fluorogenic properties of L. Probe L can be employed to detect maleic acid down to 2.74 × 10–6 M. The probe L showed good linearity from 2.97 to 6.87 µM. Analytical utility of L was examined by detecting maleic acid in various food additives and drosophila larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated during this study are included in this published article.

References

  1. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. W. H. Freeman, New York, pp 465–484

    Google Scholar 

  2. Pérez-Díaz IM, McFeeters RF (2010) Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts. J Food Sci 75:M204–M208. https://doi.org/10.1111/j.1750-3841.2010.01587.x

    Article  CAS  PubMed  Google Scholar 

  3. Rouse S, Sinderen DV (2008) Bioprotective potential of lactic acid bacteria in malting and brewing. J Food Prot 71:1724–1733. https://doi.org/10.4315/0362-028X-71.8.1724

    Article  PubMed  Google Scholar 

  4. Eiam-Ong S, Spohn M, Kurtzman NA, Sabatini S (1995) Insights into the biochemical mechanism of maleic acid-induced Fanconi syndrome. Kidney Int 48:1542–1548. https://doi.org/10.1038/ki.1995.444

    Article  CAS  PubMed  Google Scholar 

  5. Fung MH, DeVault MN, Kuwata KT, Suryanarayanan R (2018) Drug-excipient interactions: effect on molecular mobility and physical stability of ketoconazole-organic acid coamorphous systems. Mol Pharmaceutics 15:1052–1061. https://doi.org/10.1021/acs.molpharmaceut.7b00932

    Article  CAS  Google Scholar 

  6. Kalita D, Baruah JB (2010) Visual distinction of dicarboxylic acids and their salts by 1-phenyl-3-(quinolin-5-yl)urea. J Mol Struct 969:75–82. https://doi.org/10.1016/j.molstruc.2010.01.045

    Article  CAS  Google Scholar 

  7. Dash PP, Mohanty P, Behura R, Behera S, Singla P, Sahoo SC, Sahoo SK, Jali BR (2023) Detection of moisture in DMSO and raw food products by using an anthracene-based fluorescence OFF-ON chemosensor. J Photochem Photobiol A 440:114650. https://doi.org/10.1016/j.jphotochem.2023.114650

    Article  CAS  Google Scholar 

  8. Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269. https://doi.org/10.1146/annurev.neuro.30.051606.094313

    Article  CAS  PubMed  Google Scholar 

  9. Grubbs RH, Tumas W (1989) Polymer synthesis and organotransition metal chemistry. Science 243:907–915. https://doi.org/10.1126/science.2645643

    Article  CAS  PubMed  Google Scholar 

  10. Md JW, Md FH, Md EV (1990) α-Ketoglutarate and postoperative muscle catabolism. Lancet 335:701–703. https://doi.org/10.1016/0140-6736(90)90811-I

    Article  Google Scholar 

  11.  Stepinski J, Pawlowska D, Angielski S (1984) Effect of lithium on renal gluconeogenesis. Acta Biochim Pol 31:229–240. https://europepmc.org/article/med/6091377

  12. Kalita D, Baruah JB (2013) 1-Phenyl-3-(quinolin-5-yl)urea as a host for distinction of phthalic acid and terephthalic acid. J Chem Sci 125:267–273. https://doi.org/10.1007/s12039-013-0376-z

    Article  CAS  Google Scholar 

  13. Behura R, Behera S, Mohanty P, Dash PP, Panigrahi R, Mallik BS, Sahoo SK, Jali BR (2022) Fluorescent sensing of water in DMSO by 2, 4-dinitrophenyl hydrazine derived Schiff base. J Mol Struct 1251:132086. https://doi.org/10.1016/j.molstruc.2021.132086

    Article  CAS  Google Scholar 

  14. Huang J, Wang L, Shi C, Dai Y, Gu C, Liu J (2014) Selective detection of picric acid using functionalized reduced graphene oxide sensor device. Sensor Actuator B Chem 196:567–573. https://doi.org/10.1016/j.snb.2014.02.050

    Article  CAS  Google Scholar 

  15. Ewing RG, Atkinson DA, Eiceman GA, Ewing GJ (2001) A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54:515–529. https://doi.org/10.1016/s0039-9140(00)00565-8

    Article  CAS  PubMed  Google Scholar 

  16. Mohanty P, Behura R, Bhardwaj R, Dash PP, Sahoo SK, Jali BR (2022) Recent advancement on chromo-fluorogenic sensing of aluminum (III) with Schiff bases. Trends Environ Anal Chem 34:e00166. https://doi.org/10.1016/j.teac.2022.e00166

    Article  CAS  Google Scholar 

  17. Yen Y-P, Ho K-W (2006) Development of colorimetric receptors for selective discrimination between isomeric dicarboxylate anions. Tetrahedron Lett 47:7357–7361. https://doi.org/10.1016/j.tetlet.2006.08.010

    Article  CAS  Google Scholar 

  18. Samanta S, Kar C, Das G (2015) Colorimetric and fluorometric discrimination of geometrical isomers (maleic acid vs fumaric acid) with real-time detection of maleic acid in solution and food additives. Anal Chem 87(17):9002–9008. https://doi.org/10.1021/acs.analchem.5b02202

    Article  CAS  PubMed  Google Scholar 

  19. Goswami S, Das NK, Sen D, Hazra G, Goh JH, Sing YC, Fun H-K (2011) Recognition of acids involved in Krebs cycle by 9-anthrylmethyl-di(6-acetylamino-2-picolyl) amine: a case of selective fluorescence enhancement for maleic acid. New J Chem 35:2811–2819. https://doi.org/10.1039/C1NJ20339H

    Article  CAS  Google Scholar 

  20. Aït-Haddou H, Wiskur SL, Lynch VM, Anslyn EV (2001) Achieving large color changes in response to the presence of amino acids: a molecular sensing ensemble with selectivity for aspartate. J Am Chem Soc 123:11296–11297. https://doi.org/10.1021/ja011905v

    Article  CAS  PubMed  Google Scholar 

  21. Jiménez D, Martı́nez-Máñez R, Sancenón F, Soto J (2002) Selective fluoride sensing using colorimetric reagents containing anthraquinone and urea or thiourea binding sites. Tetrahedron Lett 43:2823–2825. https://doi.org/10.1016/S0040-4039(02)00363-5

    Article  Google Scholar 

  22. Li L-Q, Meng L-P (2014) Novel rhodamine derivate as high selective detection lead sensor. Spectrochim Acta A Mol Biomol Spectrosc 58:772–775. https://doi.org/10.1016/j.saa.2013.12.095

    Article  CAS  Google Scholar 

  23. Geng TM, Wang X, Wang ZQ, Chen TJ, Zhu H, Wang Y (2015) Effects of single and double bonds in linkers on colorimetric and fluorescent sensing properties of polyving akohol grafting rhodamine hydrazides. J Fluoresc 25:409–418. https://doi.org/10.1007/s10895-015-1528-y

    Article  CAS  PubMed  Google Scholar 

  24. Mohanty P, Dash PP, BehuraS Behera R, Barick AK, Jali BR (2023) Quinoline a versatile molecular probe for zinc sensor: a mini-review. Lett Appl NanoBioSci 10:12. https://doi.org/10.33263/LIANBS124.123

    Article  Google Scholar 

  25. Yen YP, Ho KW (2006) Synthesis of colorimetric receptors for dicarboxylate anions: a unique color change for malonate. Tetrahedron Lett 47:1193–1196. https://doi.org/10.1016/j.tetlet.2005.12.009

    Article  CAS  Google Scholar 

  26. Mohanty P, Behera S, Behura R, Shubhadarshinee L, Mohapatra P, Barick AK, Jali BR (2021) Antibacterial activity of thiazole and its derivatives: A. Biointerface Res Appl Chem 12:2171–2195. https://doi.org/10.33263/BRIAC122.21712195

    Article  Google Scholar 

  27. Samanta S, Goswami S, Hoque MN, Ramesh A, Das G (2014) An aggregation-induced emission (AIE) active probe renders Al (III) sensing and tracking of subsequent interaction with DNA. Chem Comm 50:11833–11836. https://doi.org/10.1039/C4CC05093B

    Article  CAS  PubMed  Google Scholar 

  28. Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41:3210–3244. https://doi.org/10.1039/C1CS15245A

    Article  CAS  PubMed  Google Scholar 

  29. Yamamoto S, Jaiswal M, Charng WL, Gambin T, Karaca E, Mirzaa G, Wiszniewski W, Sandoval H, Haelterman NA, Xiong B, Zhang K (2014) A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 159:200–214. https://doi.org/10.1016/j.cell.2014.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y, Yang SJ, Qiao HH, Wang X, Hu Q, Deng P (2014) Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep 9:1151–1162. https://doi.org/10.1016/j.celrep.2014.09.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ren X, Sun J, Housden BE, Hu Y, Roesel C, Lin S, Liu LP, Yang Z, Mao D, Sun L (2013) Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad Sci USA 110:19012–19017. https://doi.org/10.1073/pnas.1318481110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826. https://doi.org/10.1038/nbt.2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Agarwal A, Kanekar S, Sabat S, Thamburaj K (2016) Metronidazole-induced cerebellar toxicity. Neurol Int 8:6365. https://doi.org/10.4081/ni.2016.6365

    Article  PubMed  PubMed Central  Google Scholar 

  34. Woodruff BK, Wijdicks EF, Marshall WF (2002) Reversible metronidazole-induced lesions of the cerebellar dentate nuclei. N Engl J Med 346:68–69. https://doi.org/10.1056/NEJM200201033460117

    Article  PubMed  Google Scholar 

  35. Ahmed A, Loes DJ, Bressler EL (1995) Reversible magnetic resonance imaging findings in metronidazole induced encephalopathy. Neurology 45:588–589. https://doi.org/10.1212/WNL.45.3.588

    Article  CAS  PubMed  Google Scholar 

  36. Behera S, Behura R, Mohanty M, Dinda R, Mohanty P, Verma AK, Sahoo SK, Jali BR (2020) Spectroscopic, cytotoxicity and molecular docking studies on the interaction between 2, 4-dinitrophenylhydrazine derived Schiff bases with bovine serum albumin. Sens Int 1:100048. https://doi.org/10.1016/j.sintl.2020.100048

    Article  Google Scholar 

  37. Reddy GU, Lo R, Roy S, Banerjee T, Ganguly B, Das A (2013) A new receptor with a FRET based fluorescence response for selective recognition of fumaric and maleic acids in aqueous medium†. Chem Commun 49:9818–9820. https://doi.org/10.1039/c3cc45051a

    Article  CAS  Google Scholar 

Download references

Funding

Dr. Jali acknowledges a fund from DST-Biotechnology, Govt. of Odisha, and Project No.: ST-BT-MISC-0008–2020-245/ST, dated 12–01-2022.The authors also thank to Department of Chemistry, VSSUT, Burla, SVNIT Surat and NIT Rourkela for providing research facility.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. The Investigation, Validation, Formal analysis, Data curation, Writing-original draft were performed by Pragyan P. Dash, P. Mohanty, R. Behura, S. Behera, Aruna K. Barick, P. Mohapatra and M. Mishra. The Conceptualization, Resources, Supervision, and Writing-review & editing were performed by H. Sahoo, Suban K. Sahoo and Bigyan R. Jali.

Corresponding author

Correspondence to Bigyan R. Jali.

Ethics declarations

Declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics Approval

Not applicable as the study does not include any use of animals and humans.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflicts of Interest/Competing Interests

Authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 196 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, P.P., Mohanty, P., Behura, R. et al. Rapid Colorimetric and Fluorometric Discrimination of Maleic Acid vs. Fumaric Acid and Detection of Maleic Acid in Food Additives. J Fluoresc 34, 1015–1024 (2024). https://doi.org/10.1007/s10895-023-03330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03330-z

Keywords

Navigation