Skip to main content
Log in

Photocatalytic, Antibacterial, Cytotoxic and Bioimaging Applications of Fluorescent CdS Nanoparticles Prepared in DNA Biotemplate

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Synthesizing nanoparticles in biotemplates has been cited as one of the most promising way to obtain monodispersed inorganic nanoparticles. In this method, uniform voids in porous materials serve as hosts to confine the synthesized nanoparticles. DNA template can be described as a smart glue for assembling nanoscale building blocks. Here we investigate the photocatalytic, antibacterial, cytotoxic, and bioimaging applications of DNA capped CdS. XRD, SEM, TEM, UV–visible absorption, and photoluminescence spectra were used to study structural, morphological, and optical properties of CdS nanoparticles. Prepared CdS nanoparticles exhibit visible fluorescence. The photocatalytic activity of CdS towards Rhodamine 6G and Methylene blue are 64% and 91% respectively. A disc-diffusion method is used to demonstrate antibacterial screening. It was shown that CdS nanoparticles inhibit Gram-positive bacteria and Gram-negative bacteria effectively. DNA capped CdS shows higher activity than uncapped CdS nanoparticles. MTT cell viability assays were carried out in HeLa cells to investigate the cytotoxicity for 24 h. At a concentration 2.5 µg/ml, it shows 84% cell viability and 43% viability at 12.5 µg/ml. The calculated LC50 value is equal to 8 µg/ml. These DNA capped CdS nanoparticles were taken for an in-vitro experiment with HeLa cells to exhibit the possibility of bioimaging applications. The present study suggests that the synthesized CdS nanoparticles could be a potential photocatalyst, antibacterial agent, and biocompatible nanoparticle for bioimaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775

    Article  CAS  PubMed  Google Scholar 

  2. Liu Z, Yuangang Zu, Yujie Fu, Zhang Y, Liang H (2008) Growth of the oxidized nickel nanoparticles on a DNA template in aqueous solution. Mater Lett 62:2315

    Article  CAS  Google Scholar 

  3. Yao Y, Song Y, Wang Li (2008) Synthesis of CdS nanoparticles based on DNA network templates. Nanotechnology 19:405601

    Article  PubMed  Google Scholar 

  4. Wei G, Wang Li, Liu Z, Song Y, Sun L, Tao Y, Liz Z (2005) DNA-network-templated self assembly of silver nanoparticles and their application in surface enhanced Raman scattering. J Phys Chem B 109:23941

    Article  CAS  PubMed  Google Scholar 

  5. Zhu XL, Junji H-Y (2001) Electrochemical preparation of silver dendrited in the presence of DNA. Mater Res Bull 36:1687

    Article  CAS  Google Scholar 

  6. Radhika NK, Kavitha BS, Asokan S, Gorthi SS (2020) Detection of copper nanoparticles templated by DNA using etched fibre bragg grating sensor. IEEE Sens J 20(16):9179–9186

    CAS  Google Scholar 

  7. Tan SJ, Kahn JS, Derrien TL, Campolongo MJ, Zhao M, Smilgies DM, Luo D (2014) Crystallization of DNA-capped gold nanoparticles in high-concentration, divalent salt. Environ Angew Chem 126(5):1340–1343

    Article  Google Scholar 

  8. Jyothi PP, Anitha B, Smitha S, Vibitha BV, Krishna PA, Tharayil NJ (2020) DNA-assisted synthesis of nanoceria, its size dependent structural and optical properties for optoelectronic applications. Bull Mater Sci 43:1–7

    Article  Google Scholar 

  9. Banerjee R, Jayakrishnan R, Ayyub P (2000) Effect of the size-induced structural transformation on the band gap in CdS nanoparticles. J Phys Condens Matter 12:10647. https://doi.org/10.1088/0953-8984/12/50/325

    Article  CAS  Google Scholar 

  10. Murugan AV, Sonawane RS, Kale BB, Apte SK, Kulkarni AV (2001) Microwave–solvothermal synthesis of nanocrystalline cadmium sulfide. Mater Chem Phys 71:98–102. https://doi.org/10.1016/S0254-0584(00)00533-2

    Article  Google Scholar 

  11. El-Din MG (2020) Pristine and engineered biochar for the removal of contaminants coexisting in several types of industrial wastewaters: a critical review. Sci Total Environ 809:151120. https://doi.org/10.1016/j.scitotenv.2021.151120

    Article  CAS  Google Scholar 

  12. Zampeta C, Bertaki K, Triantaphyllidou IE, Frontistis Z, Vayenas DV (2021) Treatment of real industrial-grade dye solutions and printing ink wastewater using a novel pilot-scale hydrodynamic cavitation reactor. J Environ Manag 297:1. https://doi.org/10.1016/j.jenvman.2021.113301

    Article  CAS  Google Scholar 

  13. Long W, Hamza MU, Abdul-Fattah MN, Rheima AM, Ahmed YM, Fahim FS, Fakhri A (2022) Preparation, photocatalytic and antibacterial studies on novel doped ferrite nanoparticles: Characterization and mechanism evaluation. Colloids Surf A Physicochem Eng Asp 650:129468. https://doi.org/10.1016/j.colsurfa.2022.129468

    Article  CAS  Google Scholar 

  14. Paziresh F, Salem A, Salem S (2021) Super effective recovery of industrial wastewater contaminated by multi-disperse dyes through hydroxyapatite produced from eggshell. Sustain Chem Pharm 23:100501. https://doi.org/10.1016/j.scp.2021.100501

    Article  CAS  Google Scholar 

  15. Bahadoran A, Baghbadorani NB, De Lile JR, Masudy-Panah S, Sadeghi B, Li J, Fakhri A (2022) Ag doped Sn3O4 nanostructure and immobilized on hyperbranched polypyrrole for visible light sensitized photocatalytic, antibacterial agent and microbial detection process. J Photochem Photobiol B Biol 228:112393

    Article  CAS  Google Scholar 

  16. Youssef Z, LudovicColombeau SA (2018) Dye-sensitized nanoparticles for heterogeneous photocatalysis: cases studies with TiO2, ZnO, fullerene and graphene for water purification. Dyes Pigments 159:49–71. https://doi.org/10.1016/j.dyepig.2018.06.002

    Article  CAS  Google Scholar 

  17. Wei G, Basheer C, Jiang Z (2016) Visible light photocatalysis in chemoselective functionalization of C (sp3)H bonds enabled by organic dyes. Tetrahedron Lett 57:3801–3809. https://doi.org/10.1016/j.tetlet.2016.07.032

    Article  CAS  Google Scholar 

  18. Jabbar ZH, Ebrahim SE (2022) Recent advances in nano-semiconductors photocatalysis for degrading organic contaminants and microbial disinfection in wastewater: A comprehensive review. Environ Nanotechnol Monit Manag 17:100666

    CAS  Google Scholar 

  19. Naranthatta S, Janardhanan P, Pilankatta R, Nair SS (2021) Green synthesis of engineered CdS nanoparticles with reduced cytotoxicity for enhanced bioimaging application. ACS Omega 6:8646–8655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shivaji K, Mani S, Ponmurugan P, De Castro CS, Lloyd Davies M, Balasubramanian MG, Pitchaimuthu S (2018) Green-synthesis-derived CdS quantum dots using tea leaf extract: antimicrobial, bioimaging, and therapeutic applications in lung cancer cells. ACS Appl Nano Mater 1:1683–1693

    Article  CAS  Google Scholar 

  21. Hong L, Cheung TL, Rao N, Ouyang Q, Wang Y, Zeng S, Yang C et al (2017) Millifluidic synthesis of cadmium sulfide nanoparticles and their application in bioimaging. RSC Adv 7:36819–36832

    Article  CAS  Google Scholar 

  22. Kulkarni SK, Ethiraj AS, Kharrazi S, Deobagkar DN, Deobagkar DD (2005) Synthesis and spectral properties of DNA capped CdS nanoparticles in aqueous and non-aqueous media. Biosens Bioelectron 21(1):95–102

    Article  CAS  PubMed  Google Scholar 

  23. Ma N, Yang J, Stewart KM, Kelley SO (2007) DNA-passivated CdS nanocrystals: luminescence, bioimaging, and toxicity profiles. Langmuir 23(26):12783–12787. https://doi.org/10.1021/la7017727

    Article  CAS  PubMed  Google Scholar 

  24. Yao Y, Song Y, Wang L (2008) Synthesis of CdS nanoparticles based on DNA network templates. Nanotechnology 19:405601. https://doi.org/10.1088/0957-4484/19/40/405601

    Article  CAS  PubMed  Google Scholar 

  25. Nithyaja B, Vishnu K, Mathew S, Radhakrishnan P, Nampoori VP (2012) Studies on CdS nanoparticles prepared in DNA and bovine serum albumin based biotemplates. J Appl Phys 112:064704. https://doi.org/10.1063/1.4752750

    Article  CAS  Google Scholar 

  26. Reena VN, Misha H, Bhagyasree GS, Nithyaja B (2022) Enhanced photoluminescence and color tuning from Rhodamine 6G-doped sol–gel glass matrix via DNA templated CdS nanoparticles. AIP Adv 12(10):105217. https://doi.org/10.1063/5.0123529

    Article  CAS  Google Scholar 

  27. Kanude KR, Jain P (2017) Biosynthesis of CdS nanoparticles using Murraya Koenigii leaf extract and their biological studies. Int J Sci Res Multidiscip Stud 3:5–10

    Google Scholar 

  28. Borovaya MN, Naumenko AP, Matvieieva NA, Blume YB, Yemets AI (2014) Biosynthesis of luminescent CdS quantum dots using plant hairy root culture. Nanoscale Res Lett 9:1–7

    Article  CAS  Google Scholar 

  29. Kakanejadifard A, Khojasteh V, Zabardasti A, Azarbani F (2018) New azo-schiff base ligand capped silver and cadmium sulfide nanoparticles preparation, characterization, antibacterial and antifungal activities. Organic Chemistry Research 4:210–226

    Google Scholar 

  30. Ahamad T, Khan M, Kumar S, Ahamed M, Shahabuddin M, Alhazaa AN (2016) CdS quantum dots: growth, microstructural, optical and electrical characteristics. Appl Phys B 122:1–8. https://doi.org/10.1007/s00340-016-6455-3

    Article  CAS  Google Scholar 

  31. Maity R, Chattopadhyay KK (2006) Synthesis and optical characterization of CdS nanowires by chemical process. J Nanopart Res 8:125. https://doi.org/10.1007/s11051-005-8595-y

    Article  CAS  Google Scholar 

  32. Zhang YC, Wang GY, Hu XY (2007) Solvothermal synthesis of hexagonal CdS nanostructures from a single-source molecular precursor. J Alloys Compd 437:47

    Article  CAS  Google Scholar 

  33. Ma X, Xu F, Liu Y, Liu X, Zhang Z, Qian Y (2005) Double-dentate solvent-directed growth of multi-armed CdS nanorod-based semiconductors. Mater Res Bull 40:2180–2188. https://doi.org/10.1016/j.materresbull.2005.07.009

    Article  CAS  Google Scholar 

  34. Wang Y, To CY, Ng DHL (2006) Controlled synthesis of CdS nanobelts and the study of their cathodoluminescence. Mater Lett 60:1151–1155. https://doi.org/10.1016/j.matlet.2005.10.098

    Article  CAS  Google Scholar 

  35. Wang S, Jarrett BR, Kauzlarich SM, Louie AY (2007) Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. J Am Chem Soc 129:3848–3856. https://doi.org/10.1021/ja065996d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Böer KW (2010) CdS enhances Voc and fill factor in CdS/CdTe and CdS/CuInSe2 solar cells. J Appl Phys 107:023701. https://doi.org/10.1063/1.3256190

    Article  CAS  Google Scholar 

  37. Stouwdam JW, Janssen RA (2009) Electroluminescent Cu-doped CdS quantum dots. Adv Mater 21(28):2916–2920. https://doi.org/10.1002/adma.200803223

    Article  CAS  Google Scholar 

  38. Liu ZF, Li YJ, Zhao Z, Cui Y, Hara K, Miyauchi M (2010) Block copolymer templated nanoporous TiO 2 for quantum-dot-sensitized solar cells. J Mater Chem 20(3):492–497. https://doi.org/10.1039/B917634A

    Article  CAS  Google Scholar 

  39. Ma RM, Wei XL, Dai L, Huo HB, Qin GG (2007) Synthesis of CdS nanowire networks and their optical and electrical properties. Nanotechnology 18:205605. https://doi.org/10.1088/0957-4484/18/20/205605

    Article  CAS  Google Scholar 

  40. Pradhan N, Battaglia DM, Liu Y, Peng X (2008) Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett 14:312–317. https://doi.org/10.1021/nl062336y

    Article  CAS  Google Scholar 

  41. Ghosh B, Das M, Banerjee P, Das S (2008) Fabrication of vacuum-evaporated SnS/CdS heterojunction for PV applications. Sol Energy Mater Sol Cells 92:1099–1104. https://doi.org/10.1016/j.solmat.2008.03.016

    Article  CAS  Google Scholar 

  42. Reena VN, Kumar KS, Shilpa T, Aswati Nair R, Bhagyasree GS, Nithyaja B (2023) Photocatalytic and enhanced biological activities of schiff base capped fluorescent CdS nanoparticles. J Fluoresc 1–14. https://doi.org/10.1007/s10895-023-03193-4

  43. Xu B, Ahmed MB, Zhou JL, Altaee A (2020) Visible and UV photocatalysis of aqueous perfluorooctanoic acid by TiO2 and peroxymonosulfate: Process kinetics and mechanistic insights. Chemosphere 243:125366

    Article  CAS  PubMed  Google Scholar 

  44. Ayodhya D, Veerabhadram G (2019) Fabrication of Schiff base coordinated ZnS nanoparticles for enhanced photocatalytic degradation of chlorpyrifos pesticide and detection of heavy metal ions. J Materiomics 5:446–454

    Article  Google Scholar 

  45. Reena VN, Kumar KS, Bhagyasree GS, Nithyaja B (2022) One-pot synthesis, characterization, optical studies and biological activities of a novel ultrasonically synthesized Schiff base ligand and its Ni (II) complex. Results Chem 4:100576

    Article  CAS  Google Scholar 

  46. National Committee for Clinical Laboratory Standards Fifth Edition Approved Standard M2–A5 NCCLS, Villanova, PA (1993)

  47. Sakr MA, Gawad SAA, El-Daly SA, Abou Kana MT, Ebeid EZM (2019) Laser behavior of (E, E)-2, 5-Bis 2-(1-methyl-1H-Pyrrole-2-Yl pyrazine (BMPP) dye hybridized with CdS quantum dots (QDs) in sol-gel matrix and various hosts. Res J Nanosci Eng 3(2):1–12

    Article  Google Scholar 

  48. Shoujun LAI, Xijun CHANG, Sui WANG, Jie MAO, Lei TIAN (2009) Studies on the interaction between CdS quantum dots and organic dyes: Absorbtion and fluorescence spectroscopy. Rev Roum Chim 54(10):815–822

    Google Scholar 

  49. Brus LE (1984) Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409. https://doi.org/10.1063/1.447218

    Article  CAS  Google Scholar 

  50. Dorset DL (1998) X-ray diffraction: a practical approach. Microsc Microanal 4(5):513–515. https://doi.org/10.1017/S143192769800049X

    Article  CAS  PubMed  Google Scholar 

  51. Maddalena R, Hall C, Hamilton A (2018) Effect of silica particle size on the formation of calcium silicate hydrate using thermal analysis. Thermochim Acta. https://doi.org/10.1016/j.tca.2018.09.003

    Article  Google Scholar 

  52. Wang W, Germanenko I, Samy El-Shall M (2002) Room-temperature synthesis and characterization of nanocrystalline CdS, ZnS, and CdxZn1-xS. Chem Mater 14:3028. https://doi.org/10.1021/cm020040x

    Article  CAS  Google Scholar 

  53. Devi R, Purkayastha P, Kalita PK, Sarma B (2007) Synthesis of nanocrystalline CdS thin films in PVA matrix. Bull Mater Sci 30:123–128. https://doi.org/10.1007/s12034-007-0022-9

    Article  CAS  Google Scholar 

  54. Sabah A, Siddiqi SA, Ali S (2010) Fabrication and characterization of CdS nanoparticles annealed by using different radiations. World Acad Sci 4(9):532–539. https://doi.org/10.5281/zenodo.1330301

    Article  Google Scholar 

  55. Rathore KS, Deepika DP, Saxena NS, Sharma KB (2009) Effect of Cu doping on the structural, optical and electrical properties of CdS nanoparticles. J Ovonic Res 5(6):175–185

    Google Scholar 

  56. Meron T, Markovich G (2005) Ferromagnetism in colloidal Mn2+-doped ZnO nanocrystals. J Phys Chem B 109:20232. https://doi.org/10.1021/jp0539775

    Article  CAS  PubMed  Google Scholar 

  57. López-Cabaña Z, Sotomayor Torres CM, González G (2011) Semiconducting properties of layered cadmium sulphide-based hybrid nanocomposites. Nanoscale Res Lett 6:1–8. https://doi.org/10.1186/1556-276X-6-523

    Article  CAS  Google Scholar 

  58. Cao H, Wang G, Zhang S, Zhang X, Rabinovich D (2006) Growth and optical properties of wurtzite-type CdS nanocrystals. Inorg Chem 45:5103–5108. https://doi.org/10.1021/ic060440c

    Article  CAS  PubMed  Google Scholar 

  59. Wu JC, Zheng J, Wu P, Xu R (2011) Study of native defects and transition-metal (Mn, Fe Co, and Ni) doping in a zinc-blende CdS photocatalyst by DFT and hybrid DFT calculations. J Phys Chem C 115:5675–5682

    Article  CAS  Google Scholar 

  60. Khan A, Khan R, Waseem A, Iqbal A, Shah ZH (2016) CdS nanocapsulesand nanospheres as efficient solar light-driven photocatalysts for degradation of Congo red dye. Inorg Chem Commun 72:33–41. https://doi.org/10.1016/j.inoche.2016.08.001

    Article  CAS  Google Scholar 

  61. Ayodhya D, Veerabhadram G (2017) One-pot green synthesis, characterization, photocatalytic, sensing and antimicrobial studies of Calotropis gigantea leaf extract capped CdS NPs. Mater Sci Eng B Solid-State Mater Adv Technol 225:33–44. https://doi.org/10.1016/j.mseb.2017.08.008

    Article  CAS  Google Scholar 

  62. Bhadwal RK, Tripathi AS, Gupta RM (2014) Biogenic synthesis and photocatalytic activity of CdS nanoparticle. RSC Adv 4:9484–9490. https://doi.org/10.1039/C3RA46221H

    Article  CAS  Google Scholar 

  63. Li JX, Zhang RL, Pan ZJ, Liao Y, Xiong CB, Chen ML, Huang R, Pan XH, Chen Z (2021) Preparation of CdS@ C photocatalyst using phytoaccumulation Cd recycled from contaminated wastewater. Front Chem 9:717210. https://doi.org/10.3389/fchem.2021.717210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin G, Zheng J, Rong Xu (2008) Template-free synthesis of uniform CdS hollow nanospheres and their photocatalytic activities. J Phys Chem C 112(19):7363–7370. https://doi.org/10.1021/jp8006969

    Article  CAS  Google Scholar 

  65. Yu Z, Yin B, Fengyu Qu, Xiang Wu (2014) Synthesis of self-assembled CdS nanospheres and their photocatalytic activities by photodegradation of organic dye molecules. Chem Eng J 258:203–209. https://doi.org/10.1016/j.cej.2014.07.041

    Article  CAS  Google Scholar 

  66. Chen F, Jia D, Cao Y, Jin X, Liu A (2015) Facile synthesis of CdS nanorods with enhanced photocatalytic activity. Ceram Int 41(10):14604–14609. https://doi.org/10.1016/j.ceramint.2015.07.179

    Article  CAS  Google Scholar 

  67. Lucas R, Gomez-Pinto I, Avino A, Reina JJ, Eritja R, Gonzalez C, Morales JC (2011) Highly polar carbohydrates stack onto DNA duplexes via CH/π interactions. J Am Chem Soc 133(6):1909–1916. https://doi.org/10.1021/ja108962j

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge CMET Thrissur; STIC CUSAT, Cochin; SAIF, MG University; CSIF, Calicut University; Central University of Kerala for the different studies of synthesized samples.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Reena V N, Shilpa T, Aswati Nair R, Bhagyasree G S, Misha H and Nithyaja B. The first draft of the manuscript was written by Reena V N and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to V. N. Reena.

Ethics declarations

Ethical Approval

Not Applicable.

Competing Interests

No financial interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reena, V.N., Bhagyasree, G.S., Shilpa, T. et al. Photocatalytic, Antibacterial, Cytotoxic and Bioimaging Applications of Fluorescent CdS Nanoparticles Prepared in DNA Biotemplate. J Fluoresc 34, 437–448 (2024). https://doi.org/10.1007/s10895-023-03292-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03292-2

Keywords

Navigation