Skip to main content
Log in

Furan-Dihydroquinazolinone Based Fluorescent Nanoprobe for Selective Recognition of 4-Nitrophenol: A Spectofluorimetric Approach

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescent organic nanoparticles (FONPs) have attracted much attention as a practicable and effective platform for detection applications. The present article describes the preparation of FONPs derived from the quinazolinone-based 2-(furan-2-yl)-2,3-dihydroquinazolin-4(1H)-one derivative FHDQ. Self-assembly of FHDQ in an aqueous medium resulted in the formation of FONPs through H-type aggregation and showed excellent fluorescence properties. The presence of other coexisting species solutions did not affect the selective fluorescence quenching observed with the addition of 4-nitrophenol (4-NP). The photophysical properties, i.e., UV-Vis absorbance, fluorescence emission, and lifetime measurements together with zeta particle sizer, support excited-state complex formation followed by a dynamic fluorescence quenching phenomenon in the emission of FDHQNPs. In the concentration range of 0 to 36 μg.\({\mathrm{mL}}^{-1}\), the detection limit of this turn-off sensor FDHQNPs against 4-NP was determined to be 0.01611 μM. Finally, the practicability of the FDHQNPs for the analysis of 4-NP in environmental samples was demonstrated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

Data will be made available on request.

References

  1. Ahmed M, Faisal M, Ihsan A, Naseer MM (2019) Analyst 144:2480–2497. https://doi.org/10.1039/C8AN01801D

    Article  CAS  PubMed  Google Scholar 

  2. Wani WA, Shahid M, Hussain A, AlAjmi MF (2018) Fluorescent Organic Nanoparticles: New Generation Materials with Diverse Analytical and Biomedical Applications; Springer, Singapore, 1. https://doi.org/10.1007/978-981-13-2655-4

  3. Uberoi V, Bhattacharya SK (1997) Water Environ Res 69:146–156. https://doi.org/10.2175/106143097X125290

    Article  CAS  Google Scholar 

  4. Mulchandani P, Hangarter CM, Lei Y, Chen W, Mulchandani A (2005) Biosens Bioelectron 21:523–527. https://doi.org/10.1016/j.bios.2004.11.011

    Article  CAS  PubMed  Google Scholar 

  5. Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M (2012) J Hazard Mater 201–202:250–259. https://doi.org/10.1016/j.jhazmat.2011.11.076

    Article  CAS  PubMed  Google Scholar 

  6. Podeh MRH, Bhattacharya SK, Qu M (1995) Water Res 29:391–399. https://doi.org/10.1016/0043-1354(94)00193-B

    Article  CAS  Google Scholar 

  7. Nelson LM (1982) Soil Biol Biochem 14:219–222. https://doi.org/10.1016/0038-0717(82)90028-1

    Article  CAS  Google Scholar 

  8. Asadpour-Zeynali K, Najafi-Marandi P (2011) Electroanalysis 23:2241–2247. https://doi.org/10.1002/elan.201100103

    Article  CAS  Google Scholar 

  9. Deng P, Xu Z, Feng Y, Li J (2012) Sens Actuators B Chem 168:381–389. https://doi.org/10.1016/j.snb.2012.04.041

    Article  CAS  Google Scholar 

  10. Ramos RL, Moreira VR, Lebron YA, Santos AV, Santos LV, Amaral MC (2021) Environ Pollut 268:115782. https://doi.org/10.1016/j.envpol.2020.115782

  11. Karim K, Gupta SK (2002) Biodegradation 13:353–360. https://doi.org/10.1023/A:1022364616575

    Article  CAS  PubMed  Google Scholar 

  12. Ismail M, Akhtar K, Khan MI, Kamal T, Khan MA, Asiri AM, Seo J, Khan SB (2019) Curr Pharm Des 25:3645–3663. https://doi.org/10.2174/1381612825666191021142026

    Article  CAS  PubMed  Google Scholar 

  13. Guissani A, Henry Y, Lougmani N, Hickel B (1990) Free Radical Biol Med 8:173–189. https://doi.org/10.1016/0891-5849(90)90090-6

    Article  CAS  Google Scholar 

  14. Borrás C, Laredo T, Mostany J, Scharifker BR (2004) Electrochim Acta 49:641–648. https://doi.org/10.1016/j.electacta.2003.09.019

    Article  CAS  Google Scholar 

  15. Nistor C, Oubiña A, Marco MP, Barceló D, Emnéus J (2001) Anal Chim Acta 426:185–195. https://doi.org/10.1016/S0003-2670(00)00825-4

    Article  CAS  Google Scholar 

  16. Belloli R, Barletta B, Bolzacchini E, Meinardi S, Orlandi M, Rindone B (1999) J Chromatogr A 846:277–281. https://doi.org/10.1016/S0021-9673(99)00030-8

    Article  CAS  Google Scholar 

  17. Jaber F, Schummer C, Al Chami J, Mirabel P, Millet M (2007) Anal Bioanal Chem 387:2527–2535. https://doi.org/10.1007/s00216-006-1115-9

  18. Guo X, Wang Z, Zhou S (2004) Talanta 64:135–139. https://doi.org/10.1016/j.talanta.2004.01.020

    Article  CAS  PubMed  Google Scholar 

  19. Fu H-B, Yao J-N (2001) J Am Chem Soc 123:1434–1439. https://doi.org/10.1021/ja0026298

    Article  CAS  Google Scholar 

  20. Lei Y, Liao Q, Fu H, Yao J (2009) J Phys Chem C 113:10038–10043. https://doi.org/10.1021/jp901357t

    Article  CAS  Google Scholar 

  21. Wang J, Zhao Y, Zhang J, Zhang J, Yang B, Wang Y, Zhang D, You H, Ma D (2007) J Phys Chem C 111:9177–9183. https://doi.org/10.1021/jp072488x

    Article  CAS  Google Scholar 

  22. Olive AGL, Guerzo AD, Schafer C, Belin C, Raffy G, Giansante C (2010) J Phys Chem C 114:10410–10416. https://doi.org/10.1021/jp102512t

    Article  CAS  Google Scholar 

  23. Kwon E, Oikawa H, Kasai H, Nakanishi H (2007) Cryst Growth Des 7:600–602. https://doi.org/10.1021/cg0607349

    Article  CAS  Google Scholar 

  24. Eguchi S (2006) Quinazoline alkaloids and related chemistry. In: Eguchi S (ed) Bioactive heterocycles I. Topics in heterocyclic chemistry, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_022

  25. Khan I, Ibrar A, Ahmed W, Saeed A (2015) Eur J Med Chem 90:124–169. https://doi.org/10.1016/j.ejmech.2014.10.084

    Article  CAS  PubMed  Google Scholar 

  26. Alagarsamy V, Chitra K, Saravanan G, Solomon VR, Sulthana MT, Narendhar B (2018) Eur J Med Chem 151:628–685. https://doi.org/10.1016/j.ejmech.2018.03.076

    Article  CAS  PubMed  Google Scholar 

  27. Sbei N, Batanero B, Barba F, Haouas B, Benkhoud ML, Barba I (2018) Tetrahedron 74:2068–2072. https://doi.org/10.1016/j.tet.2018.03.010

    Article  CAS  Google Scholar 

  28. Mhaske SB, Argade NP (2006) Tetrahedron 62:9787–9826. https://doi.org/10.1016/j.tet.2006.07.098

    Article  CAS  Google Scholar 

  29. Connolly DJ, Cusack D, O’Sullivan TP, Guiry PJ (2005) Tetrahedron 61:10153–10202. https://doi.org/10.1016/j.tet.2005.07.010

    Article  CAS  Google Scholar 

  30. Wang D, Gao F (2013) Chem Cent J 7:95. https://doi.org/10.1186/1752-153X-7-95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dongare PR, Gore AH, Kondekar UR, Kolekar GB, Ajalkar BD (2018) Inorg Nano-Met Chem 48:49–56. https://doi.org/10.1080/24701556.2017.1357631

    Article  CAS  Google Scholar 

  32. Borase PN, Thale PB, Sahoo SK, Shankarling GS (2015) Sens Actuators B Chem 215:451–458. https://doi.org/10.1016/j.snb.2015.04.013

    Article  CAS  Google Scholar 

  33. Desroses M, Scobie M, Helleday T (2013) New J Chem 37:3595–3597. https://doi.org/10.1039/C3NJ00618B

    Article  CAS  Google Scholar 

  34. Lyklema J (1995) Fundamentals of interface and colloid science. Elsevier, Wageningen

    Google Scholar 

  35. Dieckmann Y, Colfen H, Hofmann H, Petri-Fink A (2009) Anal Chem 81:3889–3895. https://doi.org/10.1021/ac900043y

    Article  CAS  PubMed  Google Scholar 

  36. Kasha M, Rawls HR, El-Bayoumi MA (1965) Pure Appl Chem 11:371–392. https://doi.org/10.1351/pac196511030371

    Article  CAS  Google Scholar 

  37. Mahajan PG, Desai NK, Dalavi DK, Bhopate DP, Kolekar GB, Patil SR (2015) J Fluoresc 25:31–38. https://doi.org/10.1007/s10895-014-1451-7

    Article  CAS  PubMed  Google Scholar 

  38. Lim SJ, An BK, Jung SD, Chung MA, Park SY (2004) Angew Chem Int Ed 43:6346–6350. https://doi.org/10.1002/anie.200461172

    Article  CAS  Google Scholar 

  39. Patil A, Barge M, Rashinkar G, Salunkhe R (2015) Mol Divers 19:435–445. https://doi.org/10.1007/s11030-015-9580-8

    Article  CAS  PubMed  Google Scholar 

  40. Lakowicz JR (2006) Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York. https://doi.org/10.1007/978-0-387-46312-4

  41. International Conference on Harmonization (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human Use (2005) Topic Q2 (R1): Validation of analytical procedures: Text and methodology. http://www.ich.org

  42. Gore AH, Gunjal DB, Kokate MR, Sudarsan V, Anbhule PV, Patil SR, Kolekar GB, Appl ACS (2012) Mater Interfaces 4:5217–5226. https://doi.org/10.1021/am301136q

    Article  CAS  Google Scholar 

  43. Bhopate DP, Mahajan PG, Garadkar KM, Kolekar GB, Patil SR (2014) RSC Adv 4:63866–63874. https://doi.org/10.1039/C4RA13555E

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Chemistry, Shivaji University, Kolhapur, India, for providing all necessary infrastructural and instrumental facilities. The author SBW thanks The Director, Directorate of Technical Education, Government of Maharashtra, for granting permission for Ph.D. research work.

Funding

Govind B. Kolekar thanks to National Research Foundation of Korea (NRF) BP Grant No.: 2019H1D3A2A01057526.

Author information

Authors and Affiliations

Authors

Contributions

Saubai B. Wakshe, Pravin R. Dongare: Methodology, Writing- original draft. Gurunath V. Mote, Prashant V. Anbhule: Formal analysis. Anil H. Gore, Govind B. Kolekar: Conceptualization, Methodology, Writing- review & editing, Formal analysis, Investigation, Supervision.

Corresponding author

Correspondence to Govind B. Kolekar.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1261 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakshe, S.B., Dongare, P.R., Gore, A.H. et al. Furan-Dihydroquinazolinone Based Fluorescent Nanoprobe for Selective Recognition of 4-Nitrophenol: A Spectofluorimetric Approach. J Fluoresc 34, 321–332 (2024). https://doi.org/10.1007/s10895-023-03267-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03267-3

Keywords

Navigation