Skip to main content

Advertisement

Log in

Molecular Interaction of Functionalized Nanoplastics with Human Hemoglobin

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Humans are exposed to excessive nanoplastics (NPs) which have ample affinity for globular proteins. We investigated the interaction of functionalized polystyrene nanoplastics (plain: PS, carboxy: PS-COOH, and amine: PS-NH2) with human hemoglobin (Hb) utilizing multi-spectroscopic and docking approaches to acquire insights into molecular aspects of binding mechanism, which will be helpful in assessing the toxicokinetics or toxicodynamics of nanoplastics NPs. Hypsochromicity and hypochromicity were observed invariably in all the spectra (steady-state fluorescence emission, synchronous and three-dimensional) for all complexes, among which PS-NH2 binds effectively and changes the Hb’s conformation by enhancing hydrophobicity around aromatic residues, notably tryptophan. All the NPs bind with the hydrophobic pocket of B-chain in Hb, where PS and PS-NH2 bind via hydrophobic force while PS-COOH binds via hydrogen bonding (predominantly) and van der Waals force, consistent validated with docking results. The minimal shift in absorbance peak also indicates enhanced hydrophobicity by PS-NH2 with larger aggregation as demonstrated in resonance light scattering. The amide band’s shift, secondary structural analysis, and presence of characteristic functional group peaks in complexes in Infra-Red spectra confirm the structural changes in the protein. As seen in field emission scanning microscopy images, NPs penetrate the surface of proteins. These findings conclude that polystyrene NPs interact with Hb, causing structural alterations that may affect functional characteristics as well, with the greatest effect being in the order: PS-NH2>PS-COOH>PS.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

NPs:

Nanoplastics

Hb:

Human Hemoglobin

3D:

Three-dimensional

RLS:

Resonance light scattering

UV:

Ultraviolet

FTIR:

Fourier transform infrared spectroscopy.

FE-SEM:

Field Emission Scanning Electron Microscopy

PS:

Plain polystyrene nanoplastics

PS-COOH:

Carboxy functionalized polystyrene nanoplastics

PS-NH2 :

Amine-functionalized polystyrene nanoplastics

References

  1. Yuan Z, Nag R, Cummins E (2022) Human health concerns regarding microplastics in the aquatic environment - From marine to food systems. Sci Total Environ 823:153730. https://doi.org/10.1016/j.scitotenv.2022.153730

  2. Natarajan L, Soupam D, Dey S et al (2022) Toxicity of polystyrene microplastics in freshwater algae Scenedesmus obliquus: Effects of particle size and surface charge. Toxicol Rep 9:1953–1961. https://doi.org/10.1016/j.toxrep.2022.10.013

  3. González-Fernández C, Díaz Baños FG, Esteban MÁ, Cuesta A (2021) Functionalized Nanoplastics (NPs) Increase the Toxicity of Metals in Fish Cell Lines. Int J Mol Sci 22:7141. https://doi.org/10.3390/ijms22137141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tallec K, Blard O, González-Fernández C et al (2019) Surface functionalization determines behavior of nanoplastic solutions in model aquatic environments. Chemosphere 225:639–646. https://doi.org/10.1016/j.chemosphere.2019.03.077

  5. Florance I, Chandrasekaran N, Gopinath PM, Mukherjee A (2022) Exposure to polystyrene nanoplastics impairs lipid metabolism in human and murine macrophages in vitro. Ecotoxicol Environ Saf 238:113612. https://doi.org/10.1016/j.ecoenv.2022.113612

  6. Hollóczki O, Gehrke S (2019) Nanoplastics can change the secondary structure of proteins. Sci Rep 9:16013. https://doi.org/10.1038/s41598-019-52495-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang Y-F, Chen C-Y, Lu T-H, Liao C-M (2019) Toxicity-based toxicokinetic/toxicodynamic assessment for bioaccumulation of polystyrene microplastics in mice. J Hazard Mater 366:703–713. https://doi.org/10.1016/j.jhazmat.2018.12.048

    Article  CAS  PubMed  Google Scholar 

  8. Alberti KGMM (1966) Transport Function of Plasma Proteins. Nature 212:1414. https://doi.org/10.1038/2121414b0

    Article  Google Scholar 

  9. Ahmed MH, Ghatge MS, Safo MK (2020) Hemoglobin: Structure, Function and Allostery. In: Subcellular Biochemistry. Springer, pp 345–382

  10. Dimer HH, Nichols WL, Zimm BH, Ten Eyck LF (1997) Conformation-invariant Structures of the α1 β1 Human Hemoglobin Dimer

  11. Krieger GR, Philips SD (2005) Blood. In: Wexler P (ed) Encyclopedia of Toxicology, 2nd edn. Elsevier, New York, pp 323–329

    Chapter  Google Scholar 

  12. Ouellette RJ, Rawn JD (2014) 27 - Amino Acids, Peptides, and Proteins. In: Ouellette RJ, Rawn JD (eds) Organic Chemistry. Elsevier, Boston, pp 953–991

    Chapter  Google Scholar 

  13. Sun PD, Foster CE, Boyington JC (2004) Overview of Protein Structural and Functional Folds. Curr Protoc Protein Sci 35:. https://doi.org/10.1002/0471140864.ps1701s35

  14. Bunn HF, Forget BG (1986) Hemoglobin--molecular, genetic, and clinical aspects. WB Saunders Co

  15. Tibbitts J, Canter D, Graff R et al (2016) Key factors influencing ADME properties of therapeutic proteins: A need for ADME characterization in drug discovery and development. MAbs 8:229–245. https://doi.org/10.1080/19420862.2015.1115937

    Article  CAS  PubMed  Google Scholar 

  16. Zhu M, Xu Y, Sang L et al (2020) An ICT-based fluorescent probe with a large Stokes shift for measuring hydrazine in biological and water samples. Environ Pollut 256. https://doi.org/10.1016/j.envpol.2019.113427

  17. Wurzinger S, Bratu M, Wonisch W et al (2006) Interdependency of the oxidizability of lipoproteins and peroxidase activity with base excess, HCO3, pH and magnesium in human venous and capillary blood. Life Sci 78:1754–1759. https://doi.org/10.1016/j.lfs.2005.08.010

  18. Giardino L, Ambu E, Becce C et al (2006) Surface Tension Comparison of Four Common Root Canal Irrigants and Two New Irrigants Containing Antibiotic. J Endod 32:1091–1093. https://doi.org/10.1016/j.joen.2006.05.008

    Article  PubMed  Google Scholar 

  19. Guan J, Yan X, Zhao Y et al (2018) Binding studies of triclocarban with bovine serum albumin: Insights from multi-spectroscopy and molecular modeling methods. Spectrochim Acta A Mol Biomol Spectrosc 202:1–12. https://doi.org/10.1016/j.saa.2018.04.070

    Article  CAS  PubMed  Google Scholar 

  20. Yokoyama T, Neya S, Tsuneshige A et al (2006) R-state Haemoglobin with Low Oxygen Affinity: Crystal Structures of Deoxy Human and Carbonmonoxy Horse Haemoglobin Bound to the Effector Molecule L35. J Mol Biol 356:790–801. https://doi.org/10.1016/j.jmb.2005.12.018

    Article  CAS  PubMed  Google Scholar 

  21. Ruggeri F, Zhang F, Lind T et al (2013) Non-specific interactions between soluble proteins and lipids induce irreversible changes in the properties of lipid bilayers. Soft Matter 9:4219–4226. https://doi.org/10.1039/c3sm27769k

    Article  CAS  PubMed  Google Scholar 

  22. Kabiri M, Amiri-Tehranizadeh Z, Baratian A et al (2012) Use of spectroscopic, zeta potential and molecular dynamic techniques to study the interaction between human holo-transferrin and two antagonist drugs: Comparison of binary and ternary systems. Molecules 17:3114–3147. https://doi.org/10.3390/molecules17033114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bakaeean B, Kabiri M, Iranfar H et al (2012) Binding effect of common ions to human serum albumin in the presence of norfloxacin: Investigation with spectroscopic and zeta potential approaches. J Solution Chem 41:1777–1801. https://doi.org/10.1007/s10953-012-9895-3

    Article  CAS  Google Scholar 

  24. Ghisaidoobe ABT, Chung SJ (2014) Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on förster resonance energy transfer techniques. Int J Mol Sci 15:22518–22538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vivian JT, Callis PR (2001) Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J 80:2093–2109. https://doi.org/10.1016/S0006-3495(01)76183-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang X, Li H, Li D et al (2022) Unraveling the binding interaction between polyvinyl chloride microplastics and bovine hemoglobin: Multi-spectroscopic studies. J Mol Struct 1269. https://doi.org/10.1016/j.molstruc.2022.133865

  27. Monod J, Wyman J, Changeux J-P (1965) On the nature of allosteric transitions: A plausible model. J Mol Biol 12:88–118. https://doi.org/10.1016/S0022-2836(65)80285-6

  28. Brancato G, Signore G, Neyroz P et al (2015) Dual fluorescence through Kasha’s rule breaking: An unconventional photomechanism for intracellular probe design. J Phys Chem B 119:6144–6154. https://doi.org/10.1021/acs.jpcb.5b01119

    Article  CAS  PubMed  Google Scholar 

  29. Olsen S (2015) Locally-excited (LE) versus charge-transfer (CT) excited state competition in a series of para-substituted neutral green fluorescent protein (GFP) chromophore models. J Phys Chem B 119:2566–2575. https://doi.org/10.1021/jp508723d

    Article  CAS  PubMed  Google Scholar 

  30. Coelho YL, de Paula HMC, Agudelo AJP et al (2019) Lactoferrin-phenothiazine dye interactions: Thermodynamic and kinetic approach. Int J Biol Macromol 136:559–569. https://doi.org/10.1016/j.ijbiomac.2019.06.097

  31. Sekar G, Kumar NP, Mukherjee A, Chandrasekaran N (2017) Cerium oxide nanoparticles promote HSA fibrillation in vitro. Int J Biol Macromol 103:1138–1145. https://doi.org/10.1016/j.ijbiomac.2017.05.180

    Article  CAS  PubMed  Google Scholar 

  32. de Magalhães Silva M, de Araújo Dantas MD, da Silva Filho RC et al (2020) Toxicity of thimerosal in biological systems: Conformational changes in human hemoglobin, decrease of oxygen binding capacity, increase of protein glycation and amyloid’s formation. Int J Biol Macromol 154:661–671. https://doi.org/10.1016/j.ijbiomac.2020.03.156

  33. Ma Z, Prasanna G, Jiang L, Jing P (2020) Molecular interaction of cyanidin-3-O-glucoside with ovalbumin: insights from spectroscopic, molecular docking and in vitro digestive studies. J Biomol Struct Dyn 38:1858–1867. https://doi.org/10.1080/07391102.2019.1618735

    Article  CAS  PubMed  Google Scholar 

  34. Rajendran D, Chandrasekaran N, Waychal Y, Mukherjee A (2022) Nanoplastics alter the conformation and activity of human serum albumin. NanoImpact 27. https://doi.org/10.1016/j.impact.2022.100412

  35. Du X, Li Y, Xia YL et al (2016) Insights into protein–ligand interactions: Mechanisms, models, and methods. Int J Mol Sci 17

  36. Rout J, Swain BC, Subadini S et al (2021) Spectroscopic and computational insight into the conformational dynamics of hemoglobin in the presence of vitamin B12. Int J Biol Macromol 189:306–315. https://doi.org/10.1016/j.ijbiomac.2021.08.096

  37. Das S, Sarmah S, Hazarika Z et al (2020) Targeting the heme protein hemoglobin by (-)-epigallocatechin gallate and the study of polyphenol-protein association using multi-spectroscopic and computational methods. Phys Chemist Chem Phys 22:2212–2228. https://doi.org/10.1039/c9cp05301h

    Article  CAS  Google Scholar 

  38. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102. https://doi.org/10.1021/bi00514a017

    Article  CAS  PubMed  Google Scholar 

  39. Teng Y, Liu R, Li C et al (2011) The interaction between 4-aminoantipyrine and bovine serum albumin: Multiple spectroscopic and molecular docking investigations. J Hazard Mater 190:574–581. https://doi.org/10.1016/j.jhazmat.2011.03.084

  40. Bae M-J, Ishii T, Minoda K et al (2009) Albumin stabilizes (-)-epigallocatechin gallate in human serum: Binding capacity and antioxidant property. Mol Nutr Food Res 53:709–715. https://doi.org/10.1002/mnfr.200800274

    Article  CAS  PubMed  Google Scholar 

  41. Chakraborty M, Paul S, Mitra I et al (2018) To reveal the nature of interactions of human hemoglobin with gold nanoparticles having two different morphologies (sphere and star-shaped) by using various spectroscopic techniques. J Photochem Photobiol B 178:355–366. https://doi.org/10.1016/j.jphotobiol.2017.11.026

    Article  CAS  PubMed  Google Scholar 

  42. Tang J, Yang C, Zhou L et al (2012) Studies on the binding behavior of prodigiosin with bovine hemoglobin by multi-spectroscopic techniques. Spectrochim Acta A Mol Biomol Spectrosc 96:461–467. https://doi.org/10.1016/j.saa.2012.05.059

    Article  CAS  PubMed  Google Scholar 

  43. Dohare N, Siddiquee MA, Parray M din et al (2020) Esterase activity and interaction of human hemoglobin with diclofenac sodium: A spectroscopic and molecular docking study. J Mol Recogn 33. https://doi.org/10.1002/jmr.2841

  44. Yang X, Chou J, Sun G et al (1998) Synchronous Fluorescence Spectra of Hemoglobin: A Study of Aggregation States in Aqueous Solutions

  45. Jiang XY, Chen XQ, Dong Z, Xu M (2007) The application of resonance light scattering technique for the determination of tinidazole in drugs. J Autom Methods Manag Chem 2007. https://doi.org/10.1155/2007/86857

  46. Chen Z, Song T, Wang S et al (2010) Screening DNA-targeted anticancer drug in vitro based on the drug-conjugated DNA by resonance light scattering technique. Biosens Bioelectron 25:1947–1952. https://doi.org/10.1016/j.bios.2010.01.011

    Article  CAS  PubMed  Google Scholar 

  47. Seal P, Sikdar J, Roy A, Haldar R (2018) Binding of ibuprofen to human hemoglobin: Elucidation of their molecular recognition by spectroscopy, calorimetry, and molecular modeling techniques. J Biomol Struct Dyn 36:3137–3154. https://doi.org/10.1080/07391102.2017.1384399

    Article  CAS  PubMed  Google Scholar 

  48. Xu L, Liu Z, Liao T, Tuo X (2019) Probing the interaction between levamlodipine and hemoglobin based on spectroscopic and molecular docking methods. Spectrochim Acta A Mol Biomol Spectrosc 223. https://doi.org/10.1016/j.saa.2019.117306

  49. Ahire VK, Malkhede DD (2019) Interaction studies of haemoglobin with p-sulfonatocalix[8]arene by spectrophotometric methods. Chem Phys Lett 731. https://doi.org/10.1016/j.cplett.2019.136597

  50. Pignataro MF, Herrera MG, Dodero VI (2020) Evaluation of peptide/protein self-assembly and aggregation by spectroscopic methods. Molecules 25

  51. Maurya N, ud din Parray M, Maurya JK et al (2018) Interaction of promethazine and adiphenine to human hemoglobin: A comparative spectroscopic and computational analysis. Spectrochim Acta A Mol Biomol Spectrosc 199:32–42. https://doi.org/10.1016/j.saa.2018.03.023

    Article  CAS  PubMed  Google Scholar 

  52. Eftink M, Pedigo S (2003) Protein Folding. In: Meyers RA (ed) Encyclopedia of Physical Science and Technology, 3rd edn. Academic Press, New York, pp 179–190

    Chapter  Google Scholar 

  53. Mavani A, Ovung A, Luikham S et al (2022) Biophysical and molecular modeling evidences for the binding of sulfa molecules with hemoglobin. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2022.2057358

    Article  PubMed  Google Scholar 

  54. Surewicz WK, Mantsch HH (1988) New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochimica et Biophysica Acta (BBA) - Protein Struct Mol Enzymol 952:115–130. https://doi.org/10.1016/0167-4838(88)90107-0

  55. Liu C, Bo A, Cheng G et al (1998) Characterization of the structural and functional changes of hemoglobin in dimethyl sulfoxide by spectroscopic techniques. Biochimica et Biophysica Acta (BBA) - Protein Struct Mol Enzymol 1385:53–60. https://doi.org/10.1016/S0167-4838(98)00044-2

  56. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin (Shanghai) 39:549–559. https://doi.org/10.1111/j.1745-7270.2007.00320.x

    Article  CAS  PubMed  Google Scholar 

  57. Wang X, Li Y, Zhao J et al (2020) UV-induced aggregation of polystyrene nanoplastics: effects of radicals, surface functional groups and electrolyte. Environ Sci Nano 7:3914–3926. https://doi.org/10.1039/d0en00518e

    Article  CAS  Google Scholar 

  58. Kaur H, Kumar S, Kukkar D et al (2010) Transportation of drug-(polystyrene bead) conjugate by actomyosin motor system. J Biomed Nanotechnol 6:279–286. https://doi.org/10.1166/jbn.2010.1124

    Article  CAS  PubMed  Google Scholar 

  59. Jaya RP (2020) 14 - Porous concrete pavement containing nanosilica from black rice husk ash. In: Samui P, Kim D, Iyer NR, Chaudhary S (eds) New Materials in Civil Engineering. Butterworth-Heinemann, pp 493–527

    Chapter  Google Scholar 

  60. Junoh H, Jaafar J, Nordin NAHMd et al (2020) Chapter 15 - Synthetic polymer-based membranes for direct methanol fuel cell (DMFC) applications. In: Ismail AF, Salleh WNW, Yusof N (eds) Synthetic Polymeric Membranes for Advanced Water Treatment, Gas Separation, and Energy Sustainability. Elsevier, pp 337–363

    Chapter  Google Scholar 

  61. Syriopoulou A, Markopoulos I, Tzakos AG, Mavromoustakos T (2021) Ligand-Receptor Interactions and Drug Design. In: Ballante F (ed) Protein-Ligand Interactions and Drug Design. Springer, US, New York, NY, pp 89–104

    Chapter  Google Scholar 

Download references

Funding

The authors express their gratitude to the Indian Council of Medical Research (ICMR) for providing financial support through Grant-F⋅No 36/2/2020/Toxi/ BMS.

Author information

Authors and Affiliations

Authors

Contributions

Durgalakshmi Rajendran: Investigation, Methodology, Data curation, Writing – original draft, Writing – review & editing; Natarajan Chandrasekaran: Conceptualization, Supervision, Resources, Project administration, Funding acquisition, Writing – review & editing.

Corresponding author

Correspondence to Natarajan Chandrasekaran.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Competing Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 235 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendran, D., Chandrasekaran, N. Molecular Interaction of Functionalized Nanoplastics with Human Hemoglobin. J Fluoresc 33, 2257–2272 (2023). https://doi.org/10.1007/s10895-023-03221-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03221-3

Keywords

Navigation