Skip to main content
Log in

Probing Single-molecule Interfacial Electron Transfer Inside a Single Lipid Vesicle

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Inhomogeneity in single molecule electron transfer at the surface of lipid in a single vesicle has been explored by single molecule spectroscopic technique. In our study we took Di-methyl aniline (DMA), as the electron donor (D) and three different organic dyes as acceptor. These dyes are C153, C480 and C152 and they reside in different regions in the vesicle depending upon their preference of residence. For each probe, we found fluctuations in the single-molecule fluorescence decay, which are attributed to the variation in the reactivity of interfacial electron transfer. We found a non-exponential auto-correlation fluctuation of the intensity of the probe, which is ascribed to the kinetic disorder in the rate of electron transfer. We have also shown the power law distribution of the dark state (off time), which obeys the levy’s statistics. We found a shift in lifetime distribution for the probe (C153) from 3.9 ns to 3.5 ns. This observed quenching is due to the dynamic electron transfer. We observed the kinetic disorderness in the electron transfer reaction for each dye. This source of fluctuation in electron transfer rate may be ascribed to the inherent fluctuation, occurring on the time scale of ~ 1.1 ms (for C153) of the vesicle, containing lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All the data analyzed during the study are included in this article and raw data sets will be available from corresponding author as per publisher’s demand.

References

  1. Marcus RA (1993) Electron Transfer Reactions in Chemistry. Theory Exp Rev Mod Phys 65:599

    Article  CAS  Google Scholar 

  2. Wasielewski MR (1992) Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem Rev 92:435–461

    Article  CAS  Google Scholar 

  3. Sariciftci N, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminster fullerene. Science 258:1474–1476

    Article  CAS  PubMed  Google Scholar 

  4. Barbara PF, Meyer TJ, Ratner MA (1996) Contemporary issues in electron transfer research. J Phys Chem 100:13148–13168

    Article  CAS  Google Scholar 

  5. Sawant TV, Yim CS, Henry TJ, Miller DM, Makone JR (2021) Harnessing interfacial electron transfer in redox flow batteries. Joule 5(2):360–378

    Article  CAS  Google Scholar 

  6. Yu S, Myung NV (2021) Recent advances in the direct electron transfer-enabled fuel cells. Front Chem 8:620153

  7. Yang H, Luo G, Karchanaphanurach P, Louie T-M, Rech I, Cova S, Xun L, Xie XS (2003) Protein conformational dynamics probed by single molecule electron transfer. Science 302:262–266

    Article  CAS  PubMed  Google Scholar 

  8. Rao VG, Lu HP (2016) Inhomogeneous and complex interfacial electron-transfer dynamics: a single-molecule perspective. ACS Energy Lett 4:773–791

    Google Scholar 

  9. Grossman I, Aviram HY, Armony G, Horovitz A, Hofmann H, Haran G, Fass D (2015) Single-molecule spectroscopy exposes hidden states in an enzymatic electron relay. Nature Comm 6:8624

    Article  CAS  Google Scholar 

  10. Lu HP (2014) Sizing up single-molecule enzymatic conformational dynamics. Chem Soc Rev 48:1118–1143

    Article  Google Scholar 

  11. Shashkova S, Leake MC (2017) Single-molecule fluorescence microscopy review: shedding new light on old problems. Biosci Rep 37

  12. Chen R, Wu R, Zhang G, Gao Y, Xiao L, Jia S (2014) Electron transfer-based single molecule fluorescence as a probe for nano environment dynamics. Sensors 14(2):2449–2467

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kawai K, Fujitsuka M, Maruyama A (2021) Single-molecule study of redox reaction kinetics by observing fluorescence blinking. Acc Chem Res 54(4):1001–1010

    Google Scholar 

  14. Moerner WE, Orrit M (1999) Illuminating single molecules in condensed matter. Science 283:1670-1676

  15. Mazal H, Haran G (2019) Single-molecule FRET methods to study the dynamics of proteins at work. Curr Opin Biomed Eng 12:8–17

    Article  PubMed Central  PubMed  Google Scholar 

  16. Chen Y, Zhang L, Graf L, Yu B, Liu Y, Kochs G, Zhao Y, Gao S (2017) Conformational dynamics of dynamin-like MxA revealed by single molecule FRET. Nature Comm 8:15744

    Article  CAS  Google Scholar 

  17. Fernandes DD, Neale C, Gomes G-NW, Li Y, Malik A, Pandey A, Orazietti AP, Wang X, Ye L, Prosser RS, Gradinaru CC (2021) Ligand modulation of the conformational dynamics of the A2A adenosine receptor revealed by single-molecule fluorescence. Sci Rep 11:5910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Fabra S-N, Tengo M, Jense MR, Blackledge M, Milles S (2021) Quantitative description of intrinsically disordered proteins using single molecule FRET, NMR and SAXS. J Am Chem Soc 143(48):20109–20121

    Article  Google Scholar 

  19. Schubert J, Schulze A, Prodromou C, Neuweiler H (2021) Two-colour single-molecule photo-induced electron transfer fluorescence imaging microscopy of chaperone dynamics. Nature Comm 12:6964

    Article  CAS  Google Scholar 

  20. Gregoriadis G (1993) Liposome Technology. CRC Press, Boca Raton, FL

    Google Scholar 

  21. Lasic DD (1997) Liposomes in Gene Delivery. CRC Press, Boca Raton, FL

  22. Small D (1996) Handbook of Lipid Research. Plenum Press, New York

    Google Scholar 

  23. Ghosh S, Adhikari A, Mojumdar SS, Bhattacharyya K (2010) A fluorescence correlation spectroscopy study of the diffusion of an organic dye in the gel phase and fluid phase of a single lipid vesicle. J Phys Chem B 114:5736

    Article  CAS  PubMed  Google Scholar 

  24. Sasmal DK, Mandal AK, Mondal T, Bhattacharyya K (2011) Diffusion of organic dyes in ionic liquid and giant micron sized ionic liquid mixed micelle: fluorescence correlation spectroscopy. J Phys Chem B 115:7781–7787

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Wang X, Lu HP (2009) Probing single-molecule interfacial geminate electron-cation recombination dynamics. J Am Chem Soc 131:9020–9025

    Article  CAS  PubMed  Google Scholar 

  26. Eggeling C, Fries JR, Brand L, Gunther R, Seidel CAM (1998) Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. Proc Natl Acad Sci USA 95(4):1556–1561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lakowicz JR (1983) Principles of fluorescence spectroscopy

  28. Lee KCB, Siegel J, Webb SED, Lévêque-Fort S, Cole MJ, Jones R, Dowling K, Lever MJ, French PMW (2001) Application of the stretched exponential function to fluorescence lifetime imaging. Biophys J 81:1265–1274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Maroncelli M, Zhang X-X, Liang M, Roy D, Ernsting NP (2011) Measurements of the complete solvation response of coumarin 153 in ionic liquids and the accuracy of simple dielectric continuum predictions. Faraday Discuss 154:409–424

    Article  Google Scholar 

  30. Maroncelli M, Fleming GR (1987) Picosecond solvation dynamics of coumarin 153: the importance of molecular aspects of solvation. J Chem Phys 86:6221

    Article  CAS  Google Scholar 

  31. Wang Y, Wang X, Ghosh SK, Lu HP (2009) Probing Single-Molecule Interfacial Electron Transfer Dynamics of Porphyrin on TiO2 nanoparticles. J Am Chem Soc 81(131):1479–1487

    Article  Google Scholar 

  32. Hasham M, Wilson MWB (2020) Sub-bandgap optical modulation of quantum dot blinking statistics. J Phys Chem Lett 11:15:6404–6412

  33. Frantsuzov P, Kuno M, Janko B, Markus RA (2008) Universal emission intermittency in quantum dots, nanorods and nanowires. Nat Phys 4:519–522

  34. Bharadwaj P, Novotny L (2011) Robustness of quantum dot power-law blinking. Nano Lett 11:5:2137–2141

  35. Kuno M, Fromm DP, Hamann HF, Gallagher A, Nesbitt DJ (2000) Non-exponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior. J Chem Phys 112:3117

  36. Hoogenboom JC, Hernando J, van Dijk EMHP, van Hulst NF, Garcia-Parajo MF (2007) Power-Law blinking in the fluorescence of single organic molecules. Chemphyschem 8:823–833

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AKD, AKM and TM acknowledge late Professor Kankan Bhattacharyya for providing laboratory facilities.

Funding

Thanks are due to the Department of Science and Technology, India (Center for ultrafast spectroscopy and microscopy and J. C. Bose Fellowship) and Council for Scientific and Industrial Research (CSIR) for generous research support.

Author information

Authors and Affiliations

Authors

Contributions

AKD and TM designed the experiments. AKD, AKM and TM performed the experiments and analyzed the data. AKM and TM wrote the manuscripts.

Corresponding author

Correspondence to Tridib Mondal.

Ethics declarations

Ethical Approval

Not applicable here as the study does not involve any human or animal studies.

Competing Interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A.K., Mandal, A.K. & Mondal, T. Probing Single-molecule Interfacial Electron Transfer Inside a Single Lipid Vesicle. J Fluoresc 33, 2229–2239 (2023). https://doi.org/10.1007/s10895-023-03211-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03211-5

Keywords

Navigation