Skip to main content
Log in

Copper Traces Quantification in Bee’s Products by Solid Surface Fluorescence. A Green Analytical Proposal

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new methodology based on the fluorescence of Cu(II) ternary system with o-phenanthroline (o-Phen) and eosin (Eo) dyes is proposed. The metal was selectively retained on Nylon membranes and the solid surface fluorescence (SSF) was used for anayte quantification. Experimental variables that influence the formation of Cu(II)-o-Phen-eo system and retention step were studied and optimized. At optimal experimental conditions, an adequate tolerance to foreign species was shown with a LOD of 1.18 ng L−1 and a LOQ of 3.57 ng L−1. The methodology was evaluated for their greenness profile and successfully applied to analyte determination in bee’s products of West-Center Argentina. Recovery studies showed values near to 100% being satisfactorily validated by ICP-MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ghorbani M, Pedramrad T, Aghamohammadhasan M, Seyedin O, Akhlaghi H, Lahoori NA (2019) Simultaneous clean-up and determination of Cu(II), Pb(II) and Cr(III) in real water and food samples using a magnetic dispersive solid phase microextraction and differential pulse voltammetry with a green and novel modified glassy carbon electrode. Microchem J 147:545–554

    Article  CAS  Google Scholar 

  2. Woldetsadik D, Drechsel P, Keraita B, Itanna F, Gebrekidan H (2017) Heavy metal accumulation and health risk assessment in wastewater-irrigated urban vegetable farming sites of Addis Ababa, Ethiopia. Int J Food Contam 4:1–13

    Article  Google Scholar 

  3. Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512

    Article  CAS  Google Scholar 

  4. Bulut VN, Duran C, Gundogdu A, Soylak M, Yildirim N, Elci L (2008) A new approach to separation and preconcentration of some trace metals with co-precipitation method using a triazole. Talanta 76:469–474

    Article  CAS  PubMed  Google Scholar 

  5. Oe S, Miyagawa K, Honma Y, Harada M (2016) Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease. Exp Cell Res 10;347(1):192–200

    Article  Google Scholar 

  6. Royer A, Sharman T (2022) Copper Toxicity. [Updated 2022 Mar 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557456

  7. Shekari Z, Younesi H, Heydari A, Tajbakhsh M, Chaichi MJ, Shahbazi A (2017) Dariush saberi, fluorescence chemosensory determination of Cu2+ using a new rhodamine-morpholine conjugate. Chemosensors 5:26–40

    Article  Google Scholar 

  8. WHO (2008) WHO guidelines values for chemicals that are of health significance in drinking water. Guidelines for Drinking Water Quality, Geneva, 3rd en

  9. Chen L, Tian X, Yang C, Li Y, Zhou Z, Wang Y, Xiang F (2017) Highly selective and sensitive determination of copper ion based on a visual fluorescence method. Sens Actuators B Chem 240:66–75

    Article  CAS  Google Scholar 

  10. Giakisikli G, Zachariadis P, Kila I, Teshima N, Anthemidis A (2016) Flow injection solid phase extraction for trace metal determination using a chelating resin and flame atomic absorption spectrometry detection. Anal Lett 49:929–942

    Article  CAS  Google Scholar 

  11. Nakata K, Hashimoto B, Uchihara H, Okamoto Y, Ishizaka S, Fujiwara T (2015) Direct solid sampling system for electrothermal vaporization and its application to the determination of chlorine in nanopowder samples by inductively coupled plasma optical emission spectroscopy. Talanta 138:279–284

    Article  CAS  PubMed  Google Scholar 

  12. Ayala-Cabrera JF, Trujillo-Rodriguez MJ, Pino V, Hernández-Torres M, Afonso AM, Sirieix-Plénet J (2016) Ionic liquids versus ionic liquid-based surfactants in dispersive liquid–liquid microextraction for determining copper in water by flame atomic absorption spectrometry. Int J Environ Anal Chem 96:101–118

    Article  CAS  Google Scholar 

  13. Lilja C, Betova I, Bojinov M (2016) Electrochemical methods to study hydrogen production during interaction of copper with deoxygenated aqueous solution. Electrochim Acta 202:333–344

    Article  CAS  Google Scholar 

  14. Ji L, Cheng Q, Wu K, Yang X (2016) Cu-BTC frameworks-based electrochemical sensing platform for rapid and simple determination of Sunset yellow and Tartrazine. Sens Actuators B Chem 231:12–17

    Article  CAS  Google Scholar 

  15. Zong L, Song Y, Li Q, Li Z (2016) A turn-on fluorescence probe towards copper ions based on core-substituted naphthalene diimide. Sens Actuators B Chem 226:239–244

    Article  CAS  Google Scholar 

  16. Xu G, Wang J, Si G, Wang M, Xue X, Wu B et al (2016) A novel highly selective chemosensor based on curcumin for detection of Cu2+ and its application for bioimaging. Sens Actuators B Chem 230:684–689

    Article  CAS  Google Scholar 

  17. Zhang S, Yu T, Sun M, Yu H, Zhang Z, Wang S et al (2014) Highly sensitive and selective fluorescence detection of copper (II) ion based on multi-ligand metal chelation. Talanta 126:185–190

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Tao J, Chen X, Yang H (2017) An ultrasensitive and selective “off-on” rhodamine-based colorimetric and fluorescent chemodosimeter for the detection of Cu2+. Sens Actuators B Chem 244:709–716

    Article  CAS  Google Scholar 

  19. Altunay N, Tuzen M, Hazer B, Elik A (2020) Usage of the newly synthesized poly(3-hydroxybutyrate)-b-poly(vinyl benzyl xanthate) block copolymer for vortex-assisted solid-phase microextraction of cobalt (II) and nickel (II) in canned foodstuffs. Food Chem 321(15):126690

    Article  CAS  PubMed  Google Scholar 

  20. Mendil D, Uluozlu OD, Tuzen M, Soylak M (2019) Multi-element determination in some foods and beverages using silica gel modified with 1-phenylthiosemicarbazide. Food Addit Contam: Part A 36(11):1667–1676

    Article  CAS  Google Scholar 

  21. Płotka-Wasylka J, Szczepańska N, de la Guardia M, Namieśnik J (2016) Modern trends in solid phase extraction: New sorbent media. Trends Anal Chem 77:23–43

    Article  Google Scholar 

  22. Yin C, Iqbal J, Hu H, Liu B, Zhang L, Zhu B, Du Y (2012) Sensitive determination of trace mercury by UV-visible diffuse reflectance spectroscopy after complexation and membrane filtration-enrichment. J Hazard Mat 233–234

  23. Peralta C, Fernández L, Masi A (2010) A novel application of immobilization on membranes for the separation and spectrofluorimetric quantification of amiloride and furosemide in pharmaceutical samples. Anal Chim Acta 661:85–90

    Article  CAS  PubMed  Google Scholar 

  24. Vega M, Augusto M, Talio MC, Fernández LP (2011) Surfactant enhanced chemofiltration of zinc traces previous to their determination by solid surface fluorescence. Am J Anal Chem 2:902–908

    Article  CAS  Google Scholar 

  25. Talio MC, Alesso M, Acosta M, Acosta MG, Luconi MO, Fernández LP (2013) Caffeine monitoring in biological fluids by solid-surface fluorescence using membranes modified with nanotubes. Clin Chim Acta 425:201342–201347

    Article  Google Scholar 

  26. https://pubs.rsc.org/en/content/chapterhtml/2020/bk9781788015370-00001?isbn=978-1-78801-537-0 Visited: 27 Dec 2022

  27. Moyano MF, Mariño-Repizo L, Tamashiro H, Villegas L, Acosta M, Gil RA (2016) ICPMS analysis of proteins separated by Native-PAGE: Evaluation of metalloprotein profiles in human synovial fluid with acute and chronic arthritis. J Trace Elem Med Biol 36:44–51

    Article  CAS  PubMed  Google Scholar 

  28. Talio MC, Luconi MO, Masi AN, Fernández LP (2009) Determination of cadmium at ultra-trace levels by CPE–molecular fluorescence combined methodology. J Hazard Mat 170:272–277

    Article  CAS  Google Scholar 

  29. Talio MC, Luconi MO, Masi AN, Fernández LP (2010) Cadmium monitoring in saliva and urine as indicator of smoking addiction. Sci Total Environ 408:3125–3132

    Article  CAS  PubMed  Google Scholar 

  30. Rauf MA, Ikram M, Ahmad M (2002) Spectrophotometric studies of ternary complexes of lead and bismuth with o-phenanthroline and eosin. Dyes Pigments 52:183–189

    Article  CAS  Google Scholar 

  31. Ghorbani M, Pedramrad T, Aghamohammadhasan M, Seyedin O, Akhlaghi H, Lahoori NA (2019) Simultaneous clean-up and determination of Cu(II), Pb(II) and Cr(III) in real water and food samples using a magnetic dispersive solid phase microextraction and differential pulse voltammetry with a green and novel modified glassy carbon electrode. Microchem J 147:545–554

    Article  CAS  Google Scholar 

  32. Tousova K, Susankova K, Teisinger J, Vyklicky L, Vlachova V (2004) Oxidizing reagent copper-o-phenanthroline is an open channel blocker of the vanilloid receptor TRPV1. Neuropharmacology 47:273–285

    Article  CAS  PubMed  Google Scholar 

  33. Anastas PT, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors gratefully thank to Instituto de Química San Luis—Consejo Nacional de Investigaciones Científicas y Tecnológicas (INQUISAL CONICET, Project 11220130100605CO) and Universidad Nacional de San Luis (Project PROICO 02-1120), Argentina, for the financial support.

Funding

This work was supported by Instituto de Química San Luis—Consejo Nacional de Investigaciones Científicas y Tecnológicas (INQUISAL CONICET, Project 11220130100605CO) and Universidad Nacional de San Luis (Project PROICO 02–1120).

Author information

Authors and Affiliations

Authors

Contributions

Maria Carolina Talio, Vanesa Muñoz and Mariano Acosta and carried out the laboratory experiences, the calculations and the tables. Maria Carolina Talio y Liliana Patricia Fernández wrote the main manuscript text and Mariano Acosta prepared all the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Maria Carolina Talio.

Ethics declarations

Ethical Approval and Consent to Participate

Not applicable. This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Consent to Publish

Not applicable. This manuscript does not contain any individual person’s data in any form.

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talio, M.C., Muñoz, V., Acosta, M. et al. Copper Traces Quantification in Bee’s Products by Solid Surface Fluorescence. A Green Analytical Proposal. J Fluoresc 33, 1803–1812 (2023). https://doi.org/10.1007/s10895-023-03191-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03191-6

Keywords

Navigation