Skip to main content

Advertisement

Log in

Label-free Aptasensor for the Ultrasensitive Detection of Insulin Via a Synergistic Fluorescent Turn-on Strategy Based on G-quadruplex and AIEgens

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Insulin, the only hormone regulating blood glucose level, is strongly associated with diabetes and its complications. Specific recognition and ultrasensitive detection of insulin are of clinical significance for the early diagnosis and treatment of diabetes. Inspired by aggregation-induced emission, we presented a turn-on label-free fluorescence aptasensor for insulin detection. Quaternized tetraphenylethene salt was synthesized as the fluorescence probe. Guanine-rich aptamer IGA3 was selected as recognition element. Graphene oxide was chosen as the quencher. Under optimized conditions, the fluorescence aptasensor displayed a wide linear range (1.0 pM–1.0 μM) with a low limit of detection (0.42 pM). Furthermore, the aptasensor was successfully applied to detect insulin in human serum. Spiked recoveries were obtained in the range of 96.06%–104.26%. All these results demonstrated that the proposed approach has potential application in the clinical diagnostics of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data recorded and analyzed in this article are already included. Data will be available based on reasonable request.

Code Availability

Not applicable.

References

  1. Wu T, Qiao SX, Shi CZ, Wang SY, Ji G (2018) Metabolmics window into diabetic complications. J Diabetes Investig 9:244–255. https://doi.org/10.1111/jdi.12723

    Article  PubMed  Google Scholar 

  2. Soffe R, Nock V, Chase JG (2019) Towards point-of-care insulin detection. ACS Sens 4:3–19. https://doi.org/10.1021/acssensors.8b01253

    Article  CAS  PubMed  Google Scholar 

  3. Rosli N, Kwon HJ, Lim J, Yoon YA, Jeong JS (2022) Measurement comparability of insulin assays using conventional immunoassay kits. J Clin Lab Anal 36:e24521. https://doi.org/10.1002/jcla.24521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ho ENM, Wan TSM, Wong ASY, Lam KKH, Stewart BD (2011) Doping control analysis of insulin and its analogues in equine urine by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1218:1139–1146. https://doi.org/10.1016/j.chroma.2010.12.052

    Article  CAS  PubMed  Google Scholar 

  5. Cho H, Kumar S, Yang D, Vaidyanathan S, Woo K, Garcia I, Shue HJ, Yoon Y, Ferreri K, Choo H (2018) Surface-enhanced raman spectroscopy-based label-free insulin detection at physiological concentrations for analysis of islet performance. ACS Sens 3:65–71. https://doi.org/10.1021/acssensors.7b00864

    Article  CAS  PubMed  Google Scholar 

  6. Wu Y, Midinov B, White RJ (2019) Electrochemical aptamer-based sensor for real-time monitoring of insulin. ACS Sens 4:498–503. https://doi.org/10.1021/acssensors.8b01573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu GG, Sun Z, Wu YT, Sai N (2022) Dual-QDs ratios fluorescent probe for sensitive and stable detection of insulin. Spectrochim Acta Part A Mol Biomol Spectrosc 268:120641. https://doi.org/10.1016/j.saa.2021.120641

    Article  CAS  Google Scholar 

  8. Lian K, Feng HY, Liu SX, Wang KJ, Liu Q, Deng LP, Wang GY, Chen YH, Liu GZ (2022) Insulin quantification towards early diagnosis of prediabetes/diabetes. Biosens Bioelectron 203:114029. https://doi.org/10.1016/j.bios.2022.114029

    Article  CAS  PubMed  Google Scholar 

  9. Shafiei-Irannejad V, Soleymani J, Azizi S, KhoubnasabJafari M, Jouyban A, Hasanzadeh M (2019) Advanced nanomaterials towards biosensing of insulin: Analytical approaches. Trends Anal Chem 116:1–12. https://doi.org/10.1016/j.trac.2019.04.020

    Article  CAS  Google Scholar 

  10. Shen YX, Prinyawiwatkul W, Xu ZM (2019) Insulin: a review of analytical methods. Analyst 144:4139–4148. https://doi.org/10.1039/C9AN00112C

    Article  CAS  PubMed  Google Scholar 

  11. Luong AD, Roy I, Malhotra BD, Luong JHT (2021) Analytical and biosensing platforms for insulin: A review. Sen Actuators Rep 000:100028. https://doi.org/10.1016/j.snr.2021.100028

    Article  Google Scholar 

  12. Soffe R, Nock V, Chase JG (2019) Towards point-of-care insulin detection. ACS Sens 49:3–19. https://doi.org/10.1021/acssensors.8b01253

    Article  CAS  Google Scholar 

  13. Feng BB, You J, Zhao F, Wei M, Liu Y, Yuan K, Suo ZG (2022) A ratiometric fluorescent aptamer homogeneous biosensor based on hairpin structure aptamer for AFB1 detection. J Fluoresc 32:1695–1701. https://doi.org/10.1007/s10895-022-02972-9

    Article  CAS  PubMed  Google Scholar 

  14. Verdian-Doghaei A, Housaindokht MR (2015) Spectroscopic study of the interaction of insulin and its aptamer - sensitive optical detection of insulin. J Lumin 159:1–8. https://doi.org/10.1016/j.jlumin.2014.10.025

    Article  CAS  Google Scholar 

  15. Lu DQ, He L, Zhang G, Lv AP, Wang RW, Zhang XB, Tan WH (2017) Aptamer-assembled nanomaterials for fluorescent sensing and imaging. Nanophotonics 6:109–121. https://doi.org/10.1515/nanoph-2015-0145

    Article  CAS  Google Scholar 

  16. Zanchetta G, Lanfranco R, Giavazzi F, Bellini T, Buscaglia M (2017) Emerging applications of label-free optical biosensors. Nanophotonics 6:627–645. https://doi.org/10.1515/nanoph-2016-018

    Article  CAS  Google Scholar 

  17. Li DX, Li D, Zong L, Xiao YH, Sui SH, Zhuang B, Li R, Zhen HL, Li J, Huang ZP, Jiang ZG, Wu WH (2022) An AIE fluorescent sensor for rapid and selective detection of phosgene. Chem Commun 58:5296–5299. https://doi.org/10.1039/D2CC00745B

    Article  CAS  Google Scholar 

  18. Babu E, Bhuvaneswari J, Mareeswaran PM, Thanasekaran P, Lee HM, Rajagopa S (2019) Transition metal complexes based aptamers as optical diagnostic tools for disease proteins and biomolecules. Coordin Chem Rev 380:519–549. https://doi.org/10.1016/j.ccr.2018.09.010

    Article  CAS  Google Scholar 

  19. Lu LH, Wang WH, Wang MD, Kang TS, Lu JJ, Chen XP, Han QB, Leung CH, Ma DL (2016) A luminescent G-quadruplex-selective iridium (III) complex for the label-free detection of lysozyme. J Mater Chem B 4:2407–2411. https://doi.org/10.1039/C6TB00426A

    Article  CAS  PubMed  Google Scholar 

  20. Niu GL, Zhang RY, Shi XJ, Park H, Xie S, Kwok RTK, Lam JWY, Tang BZ (2020) AIE luminogens as fluorescent bioprobes Trends. Anal Chem 123:115769. https://doi.org/10.1016/j.trac.2019.115769

    Article  CAS  Google Scholar 

  21. Leung NLC, Xie N, Yuan WZ, Liu Y, Wu QY, Peng Q, Miao Q, Lam JWY, Tang BZ (2014) Restriction of intramolecular motions: The general mechanism behind aggregation-induced emission. Chem Eur J 20:15349–15353. https://doi.org/10.1002/chem.201403811

    Article  CAS  PubMed  Google Scholar 

  22. Wu YP, Shi YC, Deng S, Wu CY, Deng RJ, He GP, Zhou M, Zhong K, Gao H (2021) Metal-induced G-quadruplex polymorphism for ratiometric and label-free detection of lead pollution in tea. Food Chem 343:128425. https://doi.org/10.1016/j.foodchem.2020.128425

    Article  CAS  PubMed  Google Scholar 

  23. Zhang S, Ma L, Ma K, Xu B, Liu LJ, Tian WJ (2018) Label-free aptamer-based biosensor for specific detection of chloramphenicol using AIE probe and graphene oxide. ACS Omega 3:12886–12892. https://doi.org/10.1021/acsomega.8b01812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li B, Liu CC, Pan WL, Shen JL, Guo JY, Luo TT, Feng JJ, Situ B, An TX, Zhang Y, Zheng L (2020) Facile fluorescent aptasensor using aggregation-induced emission luminogens for exosomal proteins profiling towards liquid biopsy. Biosens Bioelectron 168:112520. https://doi.org/10.1016/j.bios.2020.112520

    Article  CAS  PubMed  Google Scholar 

  25. Duong DL, Sidhanath VB, Lathe AJ, Sheshanath VB (2018) Tetraphenylethylene-based AIE-active probes for sensing applications. ACS Appl Mater Interfaces 10:12189–12216. https://doi.org/10.1021/acsami.7b12320

    Article  CAS  Google Scholar 

  26. Yoshida W, Mochizuki E, Takase M, Hasegawa H, Morita Y, Yamazaki H, Sode K, Ikebukuro K (2009) Selection of DNA aptamers against insulin and construction of an aptameric enzyme subunit for insulin sensing. Biosens Bioelectron 24:1116–1120. https://doi.org/10.1016/j.bios.2008.06.016

    Article  CAS  PubMed  Google Scholar 

  27. Ma K, Li X, Xu B, Tian WJ (2021) Label-free bioassay with graphene oxide-based fluorescent aptasensors: A review. Anal Chim Acta 1188:338859. https://doi.org/10.1016/j.aca.2021.338859

    Article  CAS  PubMed  Google Scholar 

  28. Xu JP, Song ZG, Fang Y, Mei J, Jia L, Qin AJ, Sun JZ, Ji J, Tang BZ (2010) Label-free fluorescence detection of mercury (II) and glutathione based on Hg2+-DNA complexes stimulating aggregation-induced emission of a tetraphenylethene derivative. Analyst 135:3002–3007. https://doi.org/10.1039/C0AN00554A

    Article  CAS  PubMed  Google Scholar 

  29. Lou XD, Zhuang Y, Zuo XL, Jia YM, Hong YN, Min XH, Zhang ZY, Xu XM, Liu NN, Xia F, Tang BZ (2015) Real-time, quantitative lighting-up detection of telomerase in urines of bladder cancer patients by AIEgens. Anal Chem 87(13):6822–6827. https://doi.org/10.1021/acs.analchem.5b01099

    Article  CAS  PubMed  Google Scholar 

  30. He YH, Cheng YS, Wen XY (2022) A design of red emission CDs-based aptasensor for sensitive detection of insulin via fluorescence resonance energy transfer. Spectrochim Acta Part A Mol Biomol Spectrosc 280:121497. https://doi.org/10.1016/j.saa.2022.121497

    Article  CAS  Google Scholar 

  31. Tan S, Han R, Wu SL, Liang H, Zhao YT, Zhao H, Lia CP (2019) A novel fluorescent sensing platform for insulin detection based on competitive recognition of cationic pillar [6] arene. Talanta 197:130–137. https://doi.org/10.1016/j.talanta.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  32. Muhammad S, Xu GH, Wei FD, Cen Y, Younis MR, Xu XM, Shi ML, Cheng X, Chai YY, Hu Q (2019) Simultaneous determination of insulin and glucose in human serum based on dual emissive fluorescent nano-aptasensor of carbon dots and CdTe/CdS/ ZnS quantum dots. Sens Actuators B Chem 292:321–330. https://doi.org/10.1016/j.snb.2019.04.119

    Article  CAS  Google Scholar 

  33. Pourreza N, Ghomi M (2017) A novel metal enhanced fluorescence bio probe for insulin sensing based on Poly vinyl alcohol-borax hydrogel functionalized by Ag dots. Sens Actuators B Chem 251:609–616. https://doi.org/10.1016/j.snb.2017.05.073

  34. Yang JJ, Zhang ZF, Yan GQ (2018) An aptamer-mediated CdSe/ZnS QDs@graphene oxid composite fluorescent probe for specific detection of insulin. Sens Actuators B Chem 255:2339–2346. https://doi.org/10.1016/j.snb.2017.09.046

    Article  CAS  Google Scholar 

  35. Wang YH, Gao DY, Zhang PF, Gong P, Chen C, Gao GH, Cai LT (2014) A near infrared fluorescence resonance energy transfer based aptamer biosensor for insulin detection in human plasma. Chem Commun 250:811–813. https://doi.org/10.1039/C3CC47649A

    Article  Google Scholar 

  36. Pu Y, Zhu Z, Han D, Liu HX, Liu J, Liao J, Zhang KJ, Tan WH (2011) Insulin-binding aptamer-conjugated graphene oxide for insulin detection. Analyst 136:4138–4140. https://doi.org/10.1039/C1AN15407A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Program for Public Welfare Technology of Zhejiang Province (LGF20B050001), Natural Science Foundation of Zhejiang Province (LY20B050009), and Program for Science and Technology of Jiaxing City (2018AY11002).

Author information

Authors and Affiliations

Authors

Contributions

Xiaohui Zeng: investigation, writing-original draft, Hailong Wang: Conceptualization, Supervision, Investigation, Writing—review & editing, Funding acquisition. Yanbo Zeng, Yiwen Yang and Zulei Zhang: Writing—review & editing. Lei Li: Funding acquisition, Resources, Supervision, Writing- review & editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hailong Wang or Lei Li.

Ethics declarations

Ethical Approval

This article does not contain any studies with human or animal subjects.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 21874 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Wang, H., Zeng, Y. et al. Label-free Aptasensor for the Ultrasensitive Detection of Insulin Via a Synergistic Fluorescent Turn-on Strategy Based on G-quadruplex and AIEgens. J Fluoresc 33, 955–963 (2023). https://doi.org/10.1007/s10895-022-03116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03116-9

Keywords

Navigation