Skip to main content
Log in

Simple and Commercially Available 6-chloroimidazo[1,2-a]pyridine-2-carboxylic Acid-based Fluorescent Probe for Monitoring pH Changes

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Commercially available compounds that can be directly used as fluorescent probes will greatly promote the development of fluorescent imaging. Based on our previously work related to nitrogen bridgehead heterocycles, herein, a commercially available compound, 6-chloroimidazo[1,2-a]pyridine-2-carboxylic acid, has been detected for monitoring pH value (3.0–7.0). The probe proves to have high selectivity and sensitivity, brilliant reversibility, and extremely short response time. The real-time imaging of pH changes in yeast was also conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2.

Similar content being viewed by others

Availability of Data and Materials

Supplementary data associated with this article can be found in the online version.

References

  1. Yang YM, Zhao Q, Feng W, Li FY (2013) Luminescent chemodosimeters for bioimaging. Chem Rev 113:192–270. https://doi.org/10.1021/cr2004103

    Article  CAS  Google Scholar 

  2. Tang YH, Lee D, Wang JL, Li GH, Yu JH, Lin WY, Yoon J (2015) Development of fluorescent probes based on protection-deprotection of the key functional groups for biological imaging. Chem Soc Rev 44:5003–5015. https://doi.org/10.1039/C5CS00103J

    Article  CAS  Google Scholar 

  3. Zhang WJ, Huo FJ, Yue YK, Zhang YB, Chao JB, Cheng FQ, Yin CX (2020) Heat stroke in cell tissues related to sulfur dioxide level is precisely monitored by light-controlled fluorescent probes. J Am Chem Soc 142:3262–3268. https://doi.org/10.1021/jacs.9b13936

    Article  CAS  Google Scholar 

  4. Hou JT, Ren WX, Li K, Seo J, Sharma A, Yu XQ, Kim JS (2017) Fluorescent bioimaging of pH: from design to applications. Chem Soc Rev 46:2076–2090. https://doi.org/10.1039/C6CS00719H

    Article  CAS  Google Scholar 

  5. Wang S, Ren WX, Hou JT, Won M, An JS, Chen XY, Shu J, Kim JS (2021) Fluorescence imaging of pathophysiological microenvironments. Chem Soc Rev 50:8887–8902. https://doi.org/10.1039/d1cs00083g

    Article  CAS  Google Scholar 

  6. Wang S, Wang BY, Zhu L, Hou JT, Yu KK (2021) A ratiometric fluorescent probe for monitoring pH fluctuations during autophagy in living cells. Chem Commun 57:1510–1513. https://doi.org/10.1039/d0cc07788g

    Article  CAS  Google Scholar 

  7. Cao DX, Liu ZQ, Verwilst P, Koo S, Jangjili P, Kim JS, Lin WY (2019) Coumarin-based small-molecule fluorescent chemosensors. Chem Rev 119:10403–10519. https://doi.org/10.1021/acs.chemrev.9b00145

    Article  CAS  Google Scholar 

  8. Yang XP, Liu WY, Tang J, Li P, Weng HB, Ye Y, Xian M, Tang B, Zhao YF (2018) A multi-signal mitochondria-targeted fluorescent probe for real-time visualization of cysteine metabolism in living cells and animals. Chem Commun 54:11387–11390. https://doi.org/10.1039/C8CC05418E

    Article  CAS  Google Scholar 

  9. Yang XP, Zhang D, Ye Y, Zhao YF (2022) Recent advances in multifunctional fluorescent probes for viscosity and analytes. Coord Chem Rev 453:214336. https://doi.org/10.1016/j.ccr.2021.214336

    Article  CAS  Google Scholar 

  10. Li ZY, Xiao MM, Zheng Y, Zhao BX (2022) A spectroscopic probe with FRET-ICT feature for thiophenol monitoring in real water samples, Spectrochim Acta. Part A 279:121397. https://doi.org/10.1016/j.saa.2022.121397

    Article  CAS  Google Scholar 

  11. Wang LL, Du W, Hu ZJ, Uvdal K, Li L, Huang W (2019) Hybrid rhodamine fluorophores in the visible/NIR region for biological imaging. Angew Chem Int Ed 58:14026–21404. https://doi.org/10.1002/anie.201901061

    Article  CAS  Google Scholar 

  12. Zhu BC, Yuan F, Li RX, Li YM, Wei Q, Ma ZM, Du B, Zhang XL (2011) A highly selective colorimetric and ratiometric fluorescent chemodosimeter for imaging fluoride ions in living cells. Chem Commun 47:7098–7100. https://doi.org/10.1039/C1CC11308A

    Article  CAS  Google Scholar 

  13. Zhu BC, Wu L, Wang YW, Zhang M, Zhao ZY, Liu CY, Wang ZK, Duan QX, Jia P (2018) A highly selective and ultrasensitive ratiometric far-red fluorescent probe for imaging endogenous peroxynitrite in living cells. Sens Actuators B 259:797–802. https://doi.org/10.1016/j.snb.2017.12.135

    Article  CAS  Google Scholar 

  14. Lv HS, Huang SY, Zhao BX, Miao JY (2013) A new rhodamine B-based lysosomal pH fluorescent indicator. Anal Chim Acta 788:177–182. https://doi.org/10.1016/j.aca.2013.06.038

    Article  CAS  Google Scholar 

  15. Li Y, Zhou Y, Yue X, Dai Z (2020) Cyanine conjugate-based biomedical imaging probes. Adv Healthcare Mater 9:2001327. https://doi.org/10.1002/adhm.202001327

    Article  CAS  Google Scholar 

  16. Song GL, Liu AK, Jiang HL, Ji RX, Dong J, Ge YQ (2019) A FRET-based ratiometric fluorescent probe for detection of intrinsically generated SO2 derivatives in mitochondria. Anal Chim Acta 1053:148–154. https://doi.org/10.1016/j.aca.2018.11.052

    Article  CAS  Google Scholar 

  17. Duan GY, Zhang GX, Yuan SQ, Ji RX, Zhang LT, Ge YQ (2019) A pyrazolo[1,5-a]pyridine-based ratiometric fluorescent probe for sensing Cu2+ in cell. Spectrochim Acta A 219:173–178. https://doi.org/10.1016/j.saa.2019.04.057

    Article  CAS  Google Scholar 

  18. Xu ZY, Chen Z, Liu AK, Ji RX, Cao XQ, Ge YQ (2019) A ratiometric fluorescent probe for detection of exogenous mitochondrial SO2 based on a FRET mechanism. RSC Adv 9:8943–8948. https://doi.org/10.1039/C8RA10328C

    Article  CAS  Google Scholar 

  19. Ji RX, Qin K, Liu AK, Zhu Y, Ge YQ (2018) A simple and fast-response fluorescent probe for hypochlorite in living cells. Tetrahedron Lett 59:2372–2375. https://doi.org/10.1016/j.tetlet.2018.05.027

    Article  CAS  Google Scholar 

  20. Zhang DS, Liu AK, Ji RX, Dong J, Ge YQ (2019) A mitochondria-targeted and FRET-based ratiometric fluorescent probe for detection of SO2 derivatives in water. Anal Chim Acta 1055:133–139. https://doi.org/10.1016/j.aca.2018.12.042

    Article  CAS  Google Scholar 

  21. Zheng XL, Ji RX, Cao XQ, Ge YQ (2017) FRET-based ratiometric fluorescent probe for Cu2+ with a new indolizine fluorophore. Anal Chim Acta 978:48–54. https://doi.org/10.1016/j.aca.2017.04.048

    Article  CAS  Google Scholar 

  22. Ge YQ, Ji RX, Shen SL, Cao XQ, Li FY (2017) A ratiometric fluorescent probe for sensing Cu2+ based on new imidazo[1,5-a]pyridine fluorescent dye. Sens Actuators B 245:875–881. https://doi.org/10.1016/j.snb.2017.01.169

    Article  CAS  Google Scholar 

  23. Ge YQ, Zheng XL, Ji RX, Shen SL, Cao XQ (2017) A new pyrido[1,2-a]benzimidazole-rhodamine FRET system as an efficient ratiometric fluorescent probe for Cu2+ in living cells. Anal Chim Acta 965:103–110. https://doi.org/10.1016/j.aca.2017.02.006

    Article  CAS  Google Scholar 

  24. Ge YQ, Liu AK, Ji RX, Shen SL, Cao XQ (2017) Detection of Hg2+ by a FRET ratiometric fluorescent probe based on a novel pyrido[1,2-a]benzimidazole- rhodamine system. Sens Actuators B 251:410–415. https://doi.org/10.1016/j.snb.2017.05.097

    Article  CAS  Google Scholar 

  25. Ge YQ, Xing XJ, Liu AK, Ji RX, Shen SL, Cao XQ (2017) A novel imidazo[1,5-a]pyridine-rhodamine FRET system as an efficient ratiometric fluorescent probe for Hg2+ in living cells. Dyes Pigm 146:136–142. https://doi.org/10.1016/j.dyepig.2017.06.067

    Article  CAS  Google Scholar 

  26. Ji RX, Liu AK, Shen SL, Cao XQ, Lia F, Ge YQ (2017) An indolizine-rhodamine based FRET fluorescence sensor for highly sensitive and selective detection of Hg2+ in living cells. RSC Adv 7:40829–40833. https://doi.org/10.1039/C7RA07938A

    Article  CAS  Google Scholar 

  27. Li YZ, Qi SJ, Xia CC, Xu YH, Duan GY, Ge YQ (2019) A FRET ratiometric fluorescent probe for detection of Hg2+ based on an imidazo[1,2-a]pyridine-rhodamine system. Anal Chim Acta 1077:243–248. https://doi.org/10.1016/j.aca.2019.05.043

    Article  CAS  Google Scholar 

  28. Liu AK, Ji RX, Shen SL, Cao XQ, Ge YQ (2017) A ratiometric fluorescent probe for sensing sulfite based on a pyrido[1,2-a]benzimidazole fluorophore. New J Chem 41:10096–10100. https://doi.org/10.1039/C7NJ02086D

    Article  CAS  Google Scholar 

  29. Chen FH, Liu AK, Ji RX, Xu ZY, Dong J, Ge YQ (2019) A FRET-based probe for detection of the endogenous SO2 in cells. Dyes Pigm 165:212–216. https://doi.org/10.1016/j.dyepig.2019.02.025

    Article  CAS  Google Scholar 

  30. Zhang GX, Ji RX, Kong XY, Ning FJ, Liu AK, Cui JC, Ge YQ (2019) A FRET based ratiometric fluorescent probe for detection of sulfite in food. RSC Adv 9:1147–1150. https://doi.org/10.1039/C8RA08967A

    Article  CAS  Google Scholar 

  31. Xu YH, Duan RK, Liu H, Xia CC, Duan GY, Ge YQ (2021) Preparation of a novel pH-responsive fluorescent probe based on an imidazo[1,2-a]indole fluorophore and its application in detecting extremely low pH in saccharomyces cerevisiae. J Fluoresc 31:1219–1225. https://doi.org/10.1007/s10895-021-02739-8

    Article  CAS  Google Scholar 

  32. Zhang P, Lv HY, Duan GY, Dong J, Ge YQ (2018) A novel pyrazolo[1,5-a]pyridine fluorophore and its application to detect pH in cells. RSC Adv 8:30732–30735. https://doi.org/10.1039/C8RA06191B

    Article  CAS  Google Scholar 

  33. Ge YQ, Liu AK, Dong J, Duan GY, Cao XQ, Li FY (2017) A simple pH fluorescent probe based on new fluorophore indolizine for imaging of living cells. Sens Actuators B 247:46–52. https://doi.org/10.1016/j.snb.2017.02.157

    Article  CAS  Google Scholar 

  34. Ge YQ, Wei P, Wang T, Cao XQ, Zhang DS, Li FY (2018) A simple fluorescent probe for monitoring pH in cells based on new fluorophorepyrido[1,2-a]benzimidazole. Sens Actuators B 254:314–320. https://doi.org/10.1016/j.snb.2017.07.060

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Natural Science Foundation of Shandong Province (ZR2021MB033), Incubation Program of Youth Innovation of Shandong Province, and the Innovative Research Programs of Higher Education of Shandong Province (2019KJC009).

Author information

Authors and Affiliations

Authors

Contributions

Yunlong Gao, Guangle Song and Guowei Shi performed the experiments. Jixiang Xiao helped with the characterization of the compounds. Chunhao Yuan conducted the data analysis and wrote the paper. Yanqing Ge conceived and directed the project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yanqing Ge.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 277 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Song, G., Shi, G. et al. Simple and Commercially Available 6-chloroimidazo[1,2-a]pyridine-2-carboxylic Acid-based Fluorescent Probe for Monitoring pH Changes. J Fluoresc 33, 305–309 (2023). https://doi.org/10.1007/s10895-022-03086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03086-y

Keywords

Navigation