Skip to main content
Log in

Fluorimetric Recognition of Nerve Agent Mimic Diethylchlorophosphate Along with Cu2+/Hg2+ Ions Using Imidazole Possessing Sensor

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

An imidazole possessing sensor (1) has been designed and developed by simple one step reaction and characterization was done by using common spectroscopic methods. The fluorimetric sensing of nerve agent mimic, DCP, was carried out by observing blue shift in spectra accompanied with quenching in semi-aqueous solvent. The sensor was found proficient for the detection of DCP amongst other phosphates with detection limit of 69 nM. Furthermore, upon incorporation of various metal ions to CH3CN:H2O (4:1, v/v) solution of 1ex 340 nm), the fluorescent probe turned non-fluorescent only in presence of Cu2+/Hg2+ ions. This was accompanied by fluorescent color change from light blue to yellow in case of Hg2+ and colorless in case of Cu2+ ions. Moreover, practical applications of sensor 1 were investigated for recognition of Cu2+ and Hg2+ ions in real water samples along with the detection of DCP in soil samples from different areas. Differential emission changes observed with addition of Hg2+ ions and DCP led to observation of “NOR” and an “INHIBIT” molecular photonic logic operations at 446 and 385 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8

Similar content being viewed by others

Data Availability

The data provided in the manuscript is original and will be made available at any time on request basis.

Code Availability

Not Applicable.

References

  1. Ritchie H, Hasell J, Mathieu E, Appel C, Roser M (2013) Terrorism. https://ourworldindata.org/terrorism (Accessed: 27 Jan 2020)

  2. John H, Worek F, Thiermann H (2008) LC-MS-based procedures for monitoring of toxic organophosphorus compounds and verification of pesticide and nerve agent. Anal Bioanal Chem 391:97–116

    Article  CAS  Google Scholar 

  3. Makinen MA, Anttalainen OA, Sillanpaa MET (2010) Ion mobility spectrometry and its applications in detection of chemical warfare agents. Anal Chem 82:9594–9600

    Article  CAS  Google Scholar 

  4. Popiel S, Sakowska M (2011) Determination of chemical warfare agents and related compounds in environmental samples by solid-phase microextraction with gas chromatography. J Chromatograph A 1218:8457–8479

    Article  CAS  Google Scholar 

  5. Morelato M, Beavis A, Kirkbride P, Roux C (2013) Forensic applications of desorption electrospray ionisation mass spectrometry (DESI-MS). Forensic Sci Int 226:10–21

    Article  CAS  Google Scholar 

  6. Giannoukos S, Brkic B, Taylor S, Marshall A, Verbeck GF (2016) Chemical sniffing instrumentation for security applications. Chem Rev 116:8146–8172

    Article  CAS  Google Scholar 

  7. Kingery AF, Allen HE (1995) The environmental fate of organophosphorus nerve agents: a review. Toxicol Environ Chem 47:155–184

    Article  CAS  Google Scholar 

  8. Diaz de Grenu B, Moreno D, Torroba T, Berg A, Gunnars J, Nilsson T, Nyman R, Persson M, Petterson J, Eklind I, Wasterby P (2014) Fluorescent discrimination between traces of chemical warfare agents and their mimics. J Am Chem Soc 136:4125–4128

    Article  CAS  Google Scholar 

  9. Zhou X, Zheng Y, Liyan C, Wu X, Yoon J (2016) A fluorescent sensor for dual-channel discrimination between phosgene and a nerve-gas mimic. Angew Chem Int Ed 55:4729–4733

    Article  CAS  Google Scholar 

  10. So HS, Angupillai S, Son YA (2016) Prompt liquid-phase visual detection and low-cost vapor-phase detection of DCP, a chemical warfare agent mimic. Sens Actuators B Chem 235:447–456

    Article  CAS  Google Scholar 

  11. Fu Y, Yu J, Wang K, Liu H, Yu Y, Liu A, Peng X, He Q, Cao H, Cheng J (2018) Simple and efficient chromophoric-fluorogenic probes for diethylchlorophosphate vapor. ACS Sens 3:1445–1450

    Article  CAS  Google Scholar 

  12. Zeng L, Zeng H, Jiang L, Wang S, Hou JT, Yoon J (2019) A single fluorescent chemosensor for simultaneous discriminative detection of gaseous phosgene and a nerve agent mimic. Anal Chem 91:12070–12076

    Article  CAS  Google Scholar 

  13. Dale TJ, Rebek J (2009) Hydroxy oximes as organophosphorus nerve agent sensors. Angew Chem Int Ed 48:7850–7852

    Article  CAS  Google Scholar 

  14. Wu X, Wu Z, Han S (2011) Chromogenic and fluorogenic detection of a nerve agent simulant with a rhodamine-deoxylactam based sensor. Chem Commun 47:11468–11470

    Article  CAS  Google Scholar 

  15. Kim TI, Maity SB, Bouffard J, Kim Y (2016) Molecular rotors for the detection of chemical warfare agent simulants. Anal Chem 88:9259–9263

    Article  CAS  Google Scholar 

  16. Lu Z, Fan W, Shi X, Black CA, Fan C, Wang F (2018) A highly specific BODIPY-based fluorescent probe for the detection of nerve-agent simulants. Sens Actuators B Chem 255:176–182

    Article  CAS  Google Scholar 

  17. Sarkar HS, Ghosh A, Das S, Maiti PK, Maitra S, Mandal S, Sahoo P (2018) Visualisation of DCP, a nerve agent mimic, in Catfish brain by a simple chemosensor. Sci Rep 8:3402

    Article  Google Scholar 

  18. Mahapatra AK, Maiti K, Manna SK, Maji R, Mondal S, Mukhopadhyay CD, Sahoo P, Mandal D (2015) A cyclization-induced emission enhancement (CIEE)-based ratiometric fluorogenic and chromogenic probe for the facile detection of a nerve agent simulant DCP. Chem Commun 51:9729–9732

    Article  CAS  Google Scholar 

  19. Mandal M, Guria UN, Halder S, Karak A, Banik D, Jana K, Kar A, Mahapatra AK (2022) A dual-channel chemodosimetric sensor for discrimination between hypochlorite and nerve-agent mimic DCP: application on human breast cancer cells. Org Biomol Chem 20:4803–4814

    Article  CAS  Google Scholar 

  20. Prabhu K, Malode SJ, Kulkarni RM, Shetti NP (2022) Electro-sensing base for hazardous pesticide 2, 4-DCP and its quantification in real samples at ZnO@Cu core-shell nanoparticles in the presence of cationic surfactant. Mater Chem Phys 278:125705

    Article  CAS  Google Scholar 

  21. Velmurugan K, Mathankumar S, Santoshkumar S, Amudha S, Nandhakumar R (2015) Specific fluorescent sensing of aluminium using naphthalene benzimidazole derivative in aqueous media. Spectrochim Acta A 139:119–123

    Article  CAS  Google Scholar 

  22. Cao W, Zheng XJ, Fang DC, Jin LP (2015) Metal ion-assisted ring-opening of a quinazoline-based chemosensor: detection of copper(II) in aqueous media. Dalton Trans 44:5191–5196

    Article  CAS  Google Scholar 

  23. Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  Google Scholar 

  24. Kim JS, Quang DT (2007) Calixarene-derived fluorescent probes. Chem Rev 107:3780–3799

    Article  CAS  Google Scholar 

  25. Angell SE, Rogers CW, Zhang Y, Wolf MO, Jones WE (2006) Hemilabile coordination complexes for sensing applications. Coord Chem Rev 250:1829–1841

    Article  CAS  Google Scholar 

  26. Rogers CW, Wolf MO (2002) Luminescent molecular sensors based on analyte coordination to transition-metal complexes. Coord Chem Rev 233–234:341–350

    Article  Google Scholar 

  27. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD (2017) Fluorescent chemosensors: the past, present and future. Chem Soc Rev 46:7105–7123

    Article  CAS  Google Scholar 

  28. Thomas SW III, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:339–1386

    Article  Google Scholar 

  29. Xu W, Fu Y, Yao J, Fan T, Gao Y, He Q, Zhu D, Cao H, Cheng J (2016) Aggregation state reactivity activation of intramolecular charge transfer type fluorescent probe and application in trace vapor detection of sarin mimics. ACS Sens 1:1054–1059

    Article  CAS  Google Scholar 

  30. Cai YC, Li C, Song QH (2017) Fluorescent chemosensors with varying degrees of intramolecular charge transfer for detection of a nerve agent mimic in solutions and in vapor. ACS Sens 2:834–841

    Article  CAS  Google Scholar 

  31. Quang DT, Kim JS (2010) Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem Rev 110:6280–6301

    Article  CAS  Google Scholar 

  32. Kaur B, Kaur N, Kumar S (2018) Colorimetric metal ions sensors- a comprehensive review of the years 2011–2016. Coord Chem Rev 358:13–69

    Article  CAS  Google Scholar 

  33. Kaur K, Saini R, Kumar A, Luxami V, Kaur N, Singh P, Kumar S (2012) Chemodosimeters: an approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coord Chem Rev 256:1992–2028

    Article  CAS  Google Scholar 

  34. Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601

    Article  CAS  Google Scholar 

  35. Devaraj S, Saravanakumar D, Kandaswamy M (2009) Dual responsive chemosensors for anion and cation: synthesis and studies of selective chemosensor for F- and Cu(II) ions. Sens Actuators B 136:13–19

    Article  CAS  Google Scholar 

  36. Fitzgerald WF, Lamgorg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662

    Article  CAS  Google Scholar 

  37. Rani BK, John SA (2018) Fluorogenic mercury ion sensor based on pyrene-amino mercapto thiadiazole unit. J Hazard Mater 343:98–106

    Article  CAS  Google Scholar 

  38. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis neurodegenrative disorders (Alzheimer’s, Prion, and Parkinson’s Diseases and Amyotrophic Lateral Sclerosis). Chem Rev 106:1995–2044

    Article  CAS  Google Scholar 

  39. Crabb E, Moore LE (2010) Smart Concepts in Transition Metal Chemistry, 1st edn. RSC Publishing, Cambridge

    Google Scholar 

  40. Harris ED (2001) Copper and Iron: a landmark connection of two essential metals. J Trace Elem Exp Med 14:207–210

    Article  Google Scholar 

  41. Andreini C, Banci L, Bertini I, Rosato A (2008) Occurrence of copper proteins through the three domains of life: a bioinformatic approach. J Proteome Res 7:209–216

    Article  CAS  Google Scholar 

  42. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  CAS  Google Scholar 

  43. Xu Z, Baek KH, Kim H, Cui J, Qian X, Spring DR, Shin I, Yoon J (2010) Zn2+-triggered amide tautomerization produces a Highly Zn2+-selective, cell-permeable, and ratiometric fluorescent sensor. J Am Chem Soc 132:601–610

    Article  CAS  Google Scholar 

  44. Strausak D, Mercer JFB, Dieter HH, Stremmel W, Multhaup G (2001) Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res Bull 55:175–185

    Article  CAS  Google Scholar 

  45. Muthaup G, Schlicksupp A, Hess L, Beher D, Ruppert T, Masters CL, Beyreuther K (1996) The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science 271:1406–1409

    Article  Google Scholar 

  46. Lovstad RA (2004) A kinetic study on the distribution of Cu (II)-ions between albumin and transferring. Biometals 17:111–113

    Article  CAS  Google Scholar 

  47. Das R, Bej S, Ghosh D, Murmu NC, Hirani H, Banerjee P (2021) Stimuli-responsive discriminative detection of Cu2+ and Hg2+ with concurrent sensing of S2- from aqueous medium and bio-fluids by C-N fused azophenine functionalized “smart” hydrogel assay @A potential biomarker sensor for Wilson’s disease. Sens Actuators B Chem 341:129925

    Article  CAS  Google Scholar 

  48. Kaur N (2014) Supramolecular switches-advanced molecular logic and computation molecular logic gates. Curr Org Chem 18:2892–2909

    Article  CAS  Google Scholar 

  49. Kaur N, Singh J, Dhaka G, Rani R, Luxami V (2015) Benzothiazole-based chemosensor for CN- and Cu2+: multi-logic operations within a single molecule. Supramol Chem 27:453–459

    Article  CAS  Google Scholar 

  50. Kaur N, Dhaka G, Singh J (2015) Hg2+-induced deprotonation of an anthracene-based chemosensor: set-reset flip-flop at the molecular level using Hg2+ and I- ions. New J Chem 39:6125–6129

    Article  CAS  Google Scholar 

  51. Kaur N, Jindal G, Sukhvinder KS (2019) Cascade recognition of Hg2+ and cysteine using a naphthalene based ESIPT sensor and its application in a set/reset memorized device. New J Chem 43:436–443

    Article  CAS  Google Scholar 

  52. Kaur N, Kaur G, Alreja P (2018) 1, 10-Phenanthroline based ESIPT sensor for cascade recognition of Cu2+ and CN ions. J Photochem Photobiol A Chem 353:138–142

    Article  CAS  Google Scholar 

  53. Sahoo SK, Sharma D, Moirangthem A, Kuba A, Thomas R, Kumar R, Kuwar A, Choi HJ, Basu A (2016) Pyridoxal derived chemosensor for chromogenic sensing of Cu2+ and fluorogenic sensing of Fe3+ in semi-aqueous medium. J Luminesc 172:297–303

    Article  CAS  Google Scholar 

  54. Acha ND, Elosua C, Corres JM, Arregui FJ (2019) Fluorescent sensors for the detection of heavy metal ions in aqueous media. Sensors 19:599–633

    Article  Google Scholar 

  55. Hu JH, Li JB, Qi J, Chen JJ (2015) Highly selective and effective mercury(II) fluorescent sensors. New J Chem 39:843–848

    Article  CAS  Google Scholar 

  56. Deka S, Guha AK, Das DK (2021) Fluorescent sensors for Hg2+ and Cu2+ based on condensation products of 4H 1,2,4 Triazole 4 amine and carboxylated benzoic acids. J Fluoresc 31:1937–1945

    Article  CAS  Google Scholar 

  57. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  58. Long GL (1983) Limit of detection. a closer look at the IUPAC definition. Anal Chem 55:712A-724A

    CAS  Google Scholar 

  59. Goswami S, Chakrabarty R (2011) An imidazole based colorimetric sensor for fluoride anion. Eur J Chem 2(3):410–415

    Article  CAS  Google Scholar 

  60. Jindal G, Kaur N (2022) Fluorimetric quantification of picric acid in aqueous medium via smartphone and invisible ink applications using pyrene based sensor. Inorg Chem Comm 140:109481

    Article  CAS  Google Scholar 

  61. Razi SS, Gupta RC, Ali R, Dwivedi SK, Srivastava P, Misra A (2016) A new D-π-A type intramolecular charge transfer Dyad System to detect F: Anion induced CO2 sensing. Sens Actuators B 236:520–528

    Article  CAS  Google Scholar 

  62. Ali SS, Gangopadhyay A, Pramanik AK, Guria UN, Samanta SK, Mahapatra AK (2019) Ratiometric sensing of nerve agent mimic DCP through in situ benzisoxazole formation. Dyes Pigm 170:107585

    Article  CAS  Google Scholar 

  63. Qin T, Huang Y, Zhu K, Wang J, Pan C, Liu B, Wang L (2019) A flavonoid-based fluorescent test strip for sensitive and selective detection of a gaseous nerve agent simulant. Anal Chim Acta 1076:125–130

    Article  CAS  Google Scholar 

  64. Dagnaw FW, Feng W, Song QH (2020) Selective and rapid detection of nerve agent simulants by polymer fibers with a fluorescent chemosensor in gas phase. Sens Actuators B Chem 318:127937

    Article  CAS  Google Scholar 

  65. Hu X, Zeng H, Chen T, Yuan HQ, Zeng L, Bao GM (2020) Fast and visual detection of a chemical warfare agent mimic using a simple, effective and portable chemodosimeter. Sens Actuators B Chem 319:128282

    Article  CAS  Google Scholar 

  66. Ganesan JS, Gandhi S, Radhakrishnan K, Balasubramaniem A, Sepperumal M, Ayyanar S (2019) Execution of julolidine based derivative as bifunctional chemosensor for Zn2+ and Cu2+ ions: applications in bio-imaging and molecular logic gate. Spectrochim Acta A 219:33–43

    Article  CAS  Google Scholar 

  67. Uchacz T, Szlachcic P, Danel A, Kukułka M, Srebro-Hooper M, Stopa G, Stadnicka KM (2019) Photophysical properties of 1-pyridine-3-phenylpyrazoloquinoline and molecular logic gate implementation. Dyes Pigm 166:490–501

    Article  CAS  Google Scholar 

  68. Li WT, Wu GY, Qu WJ, Li Q, Lou JC, Lin Q, Yao H, Zhang YM, Wei TB (2017) A colorimetric and reversible fluorescent chemosensor for Ag+ in aqueous solution and its application in IMPLICATION logic gate. Sens Actuators B Chem 239:671–678

    Article  CAS  Google Scholar 

  69. Liu L, Liu P, Ga L, Ai J (2021) Advances in applications of molecular logic gates. ACS Omega 6:30189–30204

    Article  CAS  Google Scholar 

  70. Ceroni P, Bergamini G, Balzani V (2009) Old molecules, new concepts: [Ru(bpy)3]2+ as a molecular encoder decoder. Angew Chem Int Ed 48:8516–8518

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For recording the NMR, FTIR and HRMS spectra, the authors are gratified to SAIF, Panjab University Chandigarh.

Funding

The authors are greatly obliged to CSIR-New Delhi (File No.-09/135(0911)2020 EMR-I) and DST PURSE-II (Grant—48/RPC) for funding.

Author information

Authors and Affiliations

Authors

Contributions

Gitanjali Jindal contributed towards conceptualization, data curation, formal analysis, visualization, writing-original draft. Navneet Kaur gave contribution for methodology, writing-review & editing, supervision, project administration.

Corresponding author

Correspondence to Navneet Kaur.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

The authors declare that they consent to participate.

Consent for Publication

The authors provide consent for the publication.

Conflicts of Interest

The authors have no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 325 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jindal, G., Kaur, N. Fluorimetric Recognition of Nerve Agent Mimic Diethylchlorophosphate Along with Cu2+/Hg2+ Ions Using Imidazole Possessing Sensor. J Fluoresc 33, 359–371 (2023). https://doi.org/10.1007/s10895-022-03069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03069-z

Keywords

Navigation