Skip to main content
Log in

Study of Interactions Between 3-benzoyl-4-hydroxy-2-methyl-2H-1, 2-benzothiazine and Human DNA by Theoretical, Spectroscopic and Viscometric measurements

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

From the last few years mode of interactions between drugs and DNA is an attractive research area as it bridges chemistry, molecular biology and medicinal science. Interactions between small heterocyclic molecules and human DNA is a noteworthy feature in pharmacology for investigation of drugs mechanism and designing of more effective and target specific drugs with fewer side effects. The present research work focuses on the theoretical investigations of 3-benzoyl-4-hydroxy-2-methyl-2H-1, 2-benzothiazine (SASA) by using Gaussian (16 W) software to predict optimized geometry, HOMO–LUMO gap, bond length, bond angle, dihedral angle, electronic and vibrational spectra. Possible reaction site observed in SASA was C7, C9 and C18 as these atoms show maximum charge density. Later the interactions of SASA with human DNA was explored spectroscopic investigations and viscometric investigations at physiological buffers of pH of 4.7 (stomach pH) and 7.4 (blood pH) respectively. Maximum absorbance between SASA-DNA complex was observed in buffer solution of pH 3.4 at wavelength of 370 nm, whereas at 7.4 has maximim absorbance between. Spectroscopic results reflects the bathochromic and hyperchromic shift succeeding the addition of human DNA. During viscosity measurement, intercalation and electrostatic mode of interaction were detected at low and high concentration of drug in solution respectively. Increase in the value of rate constant was observed with the increase in concentration of drug. Larger values of rate constant were observed at pH 7.4 in comparison to pH 3.5. Rate constant, thermodynamic parameters and viscometric analysis prefers the intake of SASA via blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Material

All the written material is new not a copy.

Code Availability

Not applicable.

References

  1. Karlström G, Lindh R, Malmqvist PÅ, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) MOLCAS: a program package for computational chemistry, Computational Materials Science, 28(2):222–239. ISSN 0927-0256. https://doi.org/10.1016/S0927-0256(03)00109-5

  2. Anatol P, Robert F, Danuta P (2005) Effect of interferon alpha2b plus ribavirin treatment on selected growth factors in respect to inflammation and fibrosis in chronic hepatitis C. World J Gastroenterol 11(12):1854–1858. PMID: 15793880; PMCID: PMC4305890. https://doi.org/10.3748/wjg.v11.i12.1854

  3. Ghailane T, Balkhmima RA, Ghailane R, Souizi A, Touir R, Ebn Touhami M, Marakchi K, Komiha N (2013) Experimental and theoretical studies for mild steel corrosion inhibition in 1M HCl by two new benzothiazine derivatives. Corros Sci 76:317–324. ISSN 0010-938X. https://doi.org/10.1016/j.corsci.2013.06.052

  4. Gupta A, Sharma S, Reichenbach P, Marjavaara L, Nilsson AK, Lingner J, Chabes A, Rothstein R, Chang M (2013) Telomere length homeostasis responds to changes in intracellular dNTP pools. Genetics 193(4):1095–1105. Epub 2013 Jan 18. PMID: 23335335; PMCID: PMC3606089. https://doi.org/10.1534/genetics.112.149120

  5. Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney disease. Lancet 369(9569):1287–1301. PMID: 17434405. https://doi.org/10.1016/S0140-6736(07)60601-1

  6. Sirajuddin M, Ali S, Badshah A (2013) Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. J Photochem Photobiol, B 124:1–19

    Article  CAS  Google Scholar 

  7. Kuralay F, Dükar N, Bayramlı Y (2021) Designing functional materials: DNA/Poly(3,4-ethylenedioxythiophene) interfaces for advanced DNA direct electrochemistry and DNA-Drug interaction detection. Mater Sci Eng B 272

    Article  CAS  Google Scholar 

  8. Radaeva M et al (2021) Drugging the ‘undruggable’. Therapeutic targeting of protein–DNA interactions with the use of computer-aided drug discovery methods. Drug Discov Today 26(11):2660–2679

    Article  CAS  Google Scholar 

  9. Bolat G (2020) Investigation of poly(CTAB-MWCNTs) composite based electrochemical DNA biosensor and interaction study with anticancer drug Irinotecan. Microchem J 159:105426

    Article  CAS  Google Scholar 

  10. Mills A, Gago F (2021) Structural and mechanistic insight into DNA bending by antitumour calicheamicins11Electronic supplementary information (ESI) available. See https://doi.org/10.1039/d1ob01077h. Org Biomol Chem 19(30):6707–6717

  11. Begum R et al (2021) Synthesis, structural elucidation, DNA-binding and biological activity of nickel(II) mixed ligand carboxylate complexes. J Mol Struct 1242:130801

    Article  CAS  Google Scholar 

  12. Lin E-S, Huang C-Y (2021) Crystal structure of the single-stranded DNA-binding protein SsbB in complex with the anticancer drug 5-fluorouracil: Extension of the 5-fluorouracil interactome to include the oligonucleotide/oligosaccharide-binding fold protein. Biochem Biophys Res Commun 534:41–46

    Article  CAS  Google Scholar 

  13. Babu K, Selvi D, Pitchai P (2015) Synthesis and microbial studies of novel 1, 3thiazine compounds bearing schiff base moiety. Der Pharma Chemica 7(10):89–92

    CAS  Google Scholar 

  14. Asif M (2015) Chemical and Pharmacological Potential of Various Substituted Thiazine Derivatives. J Pharm Appl Chem 1:49–64

    Google Scholar 

  15. Badshah SL, Naeem A (2016) Bioactive Thiazine and Benzothiazine Derivatives: Green Synthesis Methods and Their Medicinal Importance. Molecules 21(8):1054

    Article  Google Scholar 

  16. Bozsing D et al (1996) Synthesis and pharmacological study of new 3, 4-dihydro-2H, 6H-pyrimido-[2, 1-b][1, 3] thiazines. Eur J Med Chem 31(9):663–668

    Article  CAS  Google Scholar 

  17. Ingarsal N, Amutha P, Nagarajan S (2006) Synthesis and antibacterial activities of some 2-amino-4-(1, 1′-biphenyl-4-yl)-6-aryl-6H-1, 3-thiazines. J Sulfur Chem 27(5):455–459

    Article  CAS  Google Scholar 

  18. Koketsua M et al (2002) Synthesis of 1,3-thiazine derivatives and their evaluation as potential antimycobacterial agents. Eur J Pharm Sci 15(3):307–310

    Article  Google Scholar 

  19. Sayed HH, Shamroukh AH, Rashad AE (2006) Synthesis and biological evaluation of some pyrimidine, pyrimido [2, 1-b][1, 3] thiazine and thiazolo [3, 2-a] pyrimidine derivatives. Acta Pharm Zagreb 56(2):231

    CAS  Google Scholar 

  20. Gannarapu MR et al (2014) Synthesis of novel 1,2-benzothiazine 1,1-dioxide-3-ethanone oxime N-aryl acetamide ether derivatives as potent anti-inflammatory agents and inhibitors of monocyte-to-macrophage transformation. Eur J Med Chem 75:143–150

    Article  CAS  Google Scholar 

  21. Barazarte A et al (2008) Synthesis, antimalarial activity, structure–activity relationship analysis of thieno-[3,2-b]benzothiazine S S-dioxide analogs. Bioorg Med Chem 16(7):3661–3674

    Article  CAS  Google Scholar 

  22. Barazarte A et al (2009) Synthesis and antimalarial activity of pyrazolo and pyrimido benzothiazine dioxide derivatives. Eur J Med Chem 44(3):1303–1310

    Article  CAS  Google Scholar 

  23. Zięba A, Latocha M, Sochanik A (2013) Synthesis and in vitro antiproliferative activity of novel 12(H)-quino[3,4-b][1,4]benzothiazine derivatives. Med Chem Res 22(9):4158–4163

    Article  Google Scholar 

  24. Vicini P et al (2002) Synthesis and pharmacological properties of benzisothiazole/benzimidazole derivatives with acidic groups. Il Farmaco 57(5):363–367

    Article  CAS  Google Scholar 

  25. Ahmad M et al (2010) 3-Benzoyl-4-hydr-oxy-2-methyl-2H-1,2-benzothia-zine 1,1-dioxide. Acta Crystallogr Sect E Struct Rep Online 66(Pt 4):o968

    Article  CAS  Google Scholar 

  26. Szczęśniak-Sięga BM et al (2021) Synthesis and biological evaluation as well as in silico studies of arylpiperazine-1,2-benzothiazine derivatives as novel anti-inflammatory agents. Bioorg Chem 106:104476

    Article  Google Scholar 

  27. Ahmad M et al (2013) Synthesis and antioxidant studies of novel N-substituted benzyl/phenyl-2-(3,4-dimethyl-5,5-dioxidopyrazolo[4,3-c][1,2]benzothiazin-2(4H)-yl)acetamides. Med Chem Res 22(2):794–805

    Article  CAS  Google Scholar 

  28. Aslam S et al (2014) Synthesis, molecular docking and antiviral screening of novel N′-substitutedbenzylidene-2-(4-methyl-5,5-dioxido-3-phenylbenzo[e]pyrazolo[4,3-c][1,2]thiazin-1(4H)-yl)acetohydrazides. Med Chem Res 23(6):2930–2946

    Article  CAS  Google Scholar 

  29. Vincent G et al (2014) A review on biological activities of thiazine derivatives. Int J Pharm Chem Sci 3(2):341–348

    Google Scholar 

  30. Zhang G, Hu X, Pan J (2010) Spectroscopic studies of the interaction between pirimicrab and calf thymus DNA. Mol Biomol Spectrosc 78(2):687–694

    Article  Google Scholar 

  31. Janjua NK et al (2011) Flavonoid-DNA binding studies and thermodynamic parameters. Spectrochem Acta Part A Mol Biomol Spectrosc 79:1600–1604

    Article  CAS  Google Scholar 

  32. Wilson WD (1999) 7.12 - DNA Intercalators, in Comprehensive Natural Products Chemistry. In: Barton SD, Nakanishi K, Meth-Cohn O (eds), Pergamon, Oxford, p 427–476

  33. Afsan Z et al (2020) Structure elucidation spectroscopic, single crystal X-ray diffraction and computational DFT studies of new tailored benzenesulfonamide derived Schiff base copper(II) intercalating complexes: Comprehensive biological profile {DNA binding, pBR322 DNA cleavage, Topo I inhibition and cytotoxic activity}. Bioorg Chem 94:103427

    Article  CAS  Google Scholar 

  34. Ni Y, Lin D, Kokot S (2006) Synchronous fluorescence, UV-visible spectrophotometric and voltammetric studies of the competitive interaction of bis(1,10-phenanthroline) copper (II) complex and neutral red with DNA. Anal Biochem 352(2):231–242

    Article  CAS  Google Scholar 

  35. Raufa S et al (2005) Electrochemical appeoach of anticancer drugs-DNA interaction. J Pharm Biomed Anal 37(2):205–217

    Article  Google Scholar 

  36. Shahabadi N, Fili SM, Kheirdoosh F (2013) Study on the interaction of the drug mesalamine with calf thymus DNA using molecular docking and spectroscopic techniques. J Photochem Photobiol, B 128:20–26

    Article  CAS  Google Scholar 

  37. Haq I, Chowdhry BZ, Jenkins TC (2001) Calorimetric techniques in the study of high-order DNA-drug interactions. Methods in Enzymology. Academic Press, pp 109–149

    Google Scholar 

  38. Erol A, Akpınar F, Muti M (2021) Electrochemical determination of anticancer drug Bendamustine and its interaction with double strand DNA in the absence and presence of quercetin. Colloids Surf, B 205:111884

    Article  CAS  Google Scholar 

  39. Ellis T et al (2007) A 96-well DNase I footprinting screen for drug-DNA interactions. Nucleic Acids Res 35(12):e89

    Article  Google Scholar 

  40. Phadte AA et al (2019) Spectroscopic and viscometric determination of DNA-binding modes of some bioactive dibenzodioxins and phenazines. Biochemistry and Biophysics Reports 18:100629

    Article  Google Scholar 

  41. Abbas G et al (2019) Spectroscopic studies of interactions of 2-(2-Oxo-2-Phenylethyl)-1, 2-benzisothiazol-3(2H)-one-1, 1-dioxide with human DNA. J Mol Struct 1196:403–408

    Article  CAS  Google Scholar 

  42. Sirajuddin M, Ali S, Badshah A (2013) Drug-DNA interaction and their study by UV-visible, fluorescence spectroscopies and cyclic voltammetry. J Photochem Photobiol, B 124(5):1–9

    Article  CAS  Google Scholar 

  43. Jangir DK et al (2011) FTIR and circular dichroism spectroscopic study of interaction of 5-fluorouracil with Dna. J Photochem Photobiol, B 105(2):143–148

    Article  CAS  Google Scholar 

  44. Charak S et al (2011) Spectroscopic and molecular docking studies on chlorambucil interaction with DNA. Int J Biol Macromol 51(4):406–411

    Article  Google Scholar 

  45. Shahabadi N, Mohammadi S (2012) Synthesis Characterization and DNA Interaction Studies of a New Zn(II) Complex Containing Different Dinitrogen Aromatic Ligands. Bioinorg Chem Appl 2012:571913

    Article  Google Scholar 

  46. Zhou CY et al (2006) Synthesis, characterization and studies on DNA-binding of a new Cu (II) complex with N 1, N 8-bis (1-methyl-4-nitropyrrole-20carbonyl) triethylenetetramine. J Inorg Biochem 101(1):10–18

    Article  Google Scholar 

  47. Suna M et al (2008) Study on the interaction mechanism between DNA and the main active components in Scutellariabaicalensis Georgi. Sens Actuators, B Chem 129(2):799–810

    Article  Google Scholar 

  48. Blokhina SV et al (2014) Synthesis, biological activity, distribution and membrane permeability of novel spiro-thiazines as potent neuroprotectors. Eur J Med Chem 77:8–17

    Article  CAS  Google Scholar 

  49. Wang R, Yu Z (2007) Validity and Reliability of Benesi-Hildebrand Method. Acta Phys Chim Sin 23(9):1353–1359

    Article  CAS  Google Scholar 

  50. Niederschulte J et al (2021) DNA binding site kinetics of a large antiviral polyamide. Biochimie 185:146–154

    Article  CAS  Google Scholar 

  51. Iqbal Farooqi S et al (2020) Structure and surface analysis of ibuprofen-organotin conjugate: Potential anti-cancer drug candidacy of the compound is proven by in-vitro DNA binding and cytotoxicity studies. Polyhedron 192:114845

    Article  CAS  Google Scholar 

  52. Abu-Dief AM et al (2021) Synthesis and intensive characterization for novel Zn(II), Pd(II), Cr(III) and VO(II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies. J Mol Struct 1242:130693

    Article  CAS  Google Scholar 

  53. Aslam S et al (2022) A combined experimental and theoretical study of alkyl 2-(3-benzoyl-4-hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)acetates: Synthesis, X-ray crystallography and DFT. J Mol Struct 1258:132671

    Article  CAS  Google Scholar 

  54. Ghafoor S et al (2020) The structural, spectral, frontier molecular orbital and thermodynamic analysis of 2-hydroxy 2-methyl propiophenone by MP2 and B3LYP methods. J Theor Comput Chem 19(05):2050020

    Article  CAS  Google Scholar 

  55. Ali M et al (2018) DFT Study for the Spectroscopic and Structural Analysis of p-Dimethylaminoazobenzene

  56. Sagdinc S, Pir H (2009) Spectroscopic and DFT studies of flurbiprofen as dimer and its Cu(II) and Hg(II) complexes. Spectrochim Acta Part A Mol Biomol Spectrosc 73(1):181–194

    Article  Google Scholar 

  57. Padmaja L et al (2009) Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin-A2. J Raman Spectrosc 40(4):419–428

    Article  CAS  Google Scholar 

  58. Fukui K (1982) Role of Frontier Orbitals in Chemical Reactions. Science 218(4574):747–754

    Article  CAS  Google Scholar 

  59. Sudha S et al (2020) Growth, spectroscopic, HOMO-LUMO energies, MEP, hardness and TG/DTA studies of acid potassium hydrogen fumarate as an efficient nonlinear optical material. J Mol Struct 1209:127946

    Article  CAS  Google Scholar 

  60. Celik S et al (2020) Synthesis, FT-IR and NMR characterization, antimicrobial activity, cytotoxicity and DNA docking analysis of a new anthraquinone derivate compound. 38(3):756-770

  61. Krishnakumar V, Seshadri S (2007) Scaled quantum chemical calculations and FT-IR, FT-Raman spectral analysis of 2-methyl piperazine. Spectrochim Acta Part A Mol Biomol Spectrosc 68(3):833–838

    Article  CAS  Google Scholar 

  62. Arjunan V et al (2011) Experimental spectroscopic (FTIR, FT-Raman, FT-NMR, UV–Visible) and DFT studies of 2-amino-5-chlorobenzoxazole. J Mol Struct 1003(1):92–102

    Article  CAS  Google Scholar 

  63. Mary YS et al (2008) Vibrational spectroscopic studies and ab initio calculations of 5-nitro-2-(p-fluorophenyl)benzoxazole. Spectrochim Acta Part A Mol Biomol Spectrosc 71(2):566–571

    Article  Google Scholar 

  64. Nandiyanto A, Oktiani R, Ragadhita R (2019) How to Read and Interpret FTIR Spectroscope of Organic Material. Indones J Sci Technol 4:97–118

    Article  Google Scholar 

  65. Mary YS et al (2008) Vibrational spectroscopic studies and ab initio calculations of 5-nitro-2-(p-fluorophenyl) benzoxazole. 71(2):566–571

  66. Nandiyanto ABD et al (2019) How to read and interpret FTIR spectroscope of organic material 4(1):97–118

  67. Ji Y et al (2016) Negative absorption peaks in ultraviolet–visible spectrum of water1(13):3443–3448

  68. Moosavi-Movahedi AA et al (2004) Differential scanning calorimetric study of the molten globule state of cytochrome c induced by sodium n-dodecyl sulfate. Thermochim Acta 409(2):137–144

    Article  CAS  Google Scholar 

  69. Kuntz ID et al (1968) Molecular interactions and the Benesi-Hildebrand equation. J Am Chem Soc 90(18):4778–4781

    Article  CAS  Google Scholar 

  70. Hosseinzadeh M et al (2019) Characterization of the structural changes of human serum albumin upon interaction with single-walled and multi-walled carbon nanotubes: spectroscopic and molecular modeling approaches. Res Chem Intermed 45(2):401–423

    Article  CAS  Google Scholar 

  71. Moondra S et al (2018) Chapter 6 - Bulk Level Properties and its Role in Formulation Development and Processing. In: Tekade RK (ed) Dosage Form Design Parameters, Academic Press, p 221–256

  72. Winogradoff D, Li PY, Joshi H, Quednau L, Maffeo C, Aksimentiev A (2021) Chiral Systems Made from DNA. Adv Sci 8(5). https://doi.org/10.1002/advs.202003113

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept and design of this article is collective contribution of all authors. They all read and approve the final manuscript of this research article. Sana Fatima long with Sadia Asim plays a vital role in material preparation, data collection, and analysis. All theoretical calculations were performed by Asim Mansha. The first draf of manuscript was written by Sana Fatima which was later refined by Sadia Asim and Asim Mansha.

Corresponding author

Correspondence to Sadia Asim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

Not applicable.

Conset to Participate

Yes, i got permission.

Consent for Publication

Yes, you can publish it.

Conflict of Interest

The review article entitled “Study of Interactions Between 3-benzoyl-4-hydroxy-2-methyl-2H-1, 2-benzothiazine and Human DNA by Theoretical, Spectroscopic and Viscometric Measurements.” is carried out with the financial help from Higher Education Commission, Pakistan (Project number: 9922). All the authors involved in the write up of this article do not have any conflict of Interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asim, S., Mansha, A., Aslam, S. et al. Study of Interactions Between 3-benzoyl-4-hydroxy-2-methyl-2H-1, 2-benzothiazine and Human DNA by Theoretical, Spectroscopic and Viscometric measurements. J Fluoresc 33, 311–326 (2023). https://doi.org/10.1007/s10895-022-03045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03045-7

Keywords

Navigation