Skip to main content
Log in

Further Develop 1,3,4-Thiadiazole Based Probe to Effectively Detect 2,4,6-Trinitrophenol with the Help of DFT Calculations

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Four fluorimetric probes had been developed to rapidly detect 2,4,6-trinitrophenol (TNP). They were designed and synthesized on the basis of 1,3,4-thiadiazole framework combining calculation with experiment. Among them, SK-1 displayed strong blue emission with fluorescence quantum yield as high as 63.6% in solution. Further evaluation demonstrated that SK-1 displays good selectivity and high sensitivity for rapid and visual detection of TNP. It brought significant changes in both colour and fluorescence emission spectrum. The detection limit was as low as 38 nM. Quenching mechanism was confirmed as photo-induced electron transfer (PET) by nuclear magnetic titration and DFT calculations. What’s more, application in real water samples and solid phase paper tests illustrated the practical significance of detection of TNP in both vapor and solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Material

The authors affirm that the information/data of this research article is available inside the article.

Code Availability

‘Gaussian 09, Revision D.01’ Liaoning Normal University.

References

  1. Kovacic P, Somanathan R (2014) J Appl Toxicol 34:810

    Article  CAS  Google Scholar 

  2. Hu Z, Deibert BJ, Li J (2014) Chem Soc Rev 43:5815

    Article  CAS  Google Scholar 

  3. Verbitskiy EV, Baranova AA, Lugovik KI, Shafikov MZ, Khokhlov KO, Cheprakova EM, Rusinov GL, Chupakhin ON, Charushin VN (2016) Anal Bioanal Chem 408:4093

    Article  CAS  Google Scholar 

  4. Verbitskiy EV, Gorbunov EB, Baranova AA, Lugovik KI, Khokhlov KO, Cheprakova EM, Kim GA, Rusinov GL, Cheprakova ON, Charushin VN (2016) Tetrahedron 72:4954

    Article  CAS  Google Scholar 

  5. Xin XL, Zhang MH, Ji SJ, Dong HX, Zhang LL (2018) J Solid State Chem 262:186

    Article  CAS  Google Scholar 

  6. Samanta SK, Bhushan B, Chauhan A, Jain RK (2000) Biochem Bioph Res Co 269:117

    Article  CAS  Google Scholar 

  7. Akhgari F, Fattahi H, Oskoei YM (2015) Sens Actuat B 221:867

    Article  CAS  Google Scholar 

  8. Chu F, Tsiminis G, Spooner NA, Monro TM (2014) Sens Actuat B 199:22

    Article  CAS  Google Scholar 

  9. Dinda D, Gupta A, Shaw BK, Sadhu S, Saha SK, Appl ACS (2014) Mater Interfaces 6:10722

    Article  CAS  Google Scholar 

  10. Musha IAS, Mihir S, Debjani M, Ananya D (2018) ACS Omega 3:10306

    Article  Google Scholar 

  11. Zhang WJ, Liu SG, Han L, Ling Y, Liu LL, Shi M, Luo HQ, Li N (2018) Anal Methods 10:4251

    Article  CAS  Google Scholar 

  12. Liang HQ, Yao ZY, Ge WQ, Qiao YD, Zhang L, Gao Z (2016) RSC Adv 6:38328

    Article  CAS  Google Scholar 

  13. Fan HH, Guo QX, Wang Y, Zhang H, Ning KK, Duan JY, He LJ, Jiang XM, Zhao WJ (2018) Spectroc Acta Pt A-Molec Biomolec Spectr 205:221

    Article  CAS  Google Scholar 

  14. Harathi J, Thenmozhi K (2022) Chemosphere 286:131825

    Article  CAS  Google Scholar 

  15. Zhang Z, Chen S, Shi R, Ji JW, Wang DQ, Jin SH, Han TY, Zhou CX, Shu QH (2017) Talanta 166:228

    Article  CAS  Google Scholar 

  16. Niu PF, Kang JF, Tian XH, Song LN, Liu HW, Yu WQ, Chang JB (2015) J Org Chem 80:1018

    Article  CAS  Google Scholar 

  17. Kumar DR, Sayed MS, Baynosa ML, Shim JJ (2020) Microchem J 157:105023

    Article  CAS  Google Scholar 

  18. Meaney MS, McGuffin VL (2008) Anal Chim Acta 610:57

    Article  CAS  Google Scholar 

  19. Srivastava V, Singh PK, Singh PP (2015) Croat Chem Acta 88:59

    Article  CAS  Google Scholar 

  20. Li J, Wang N, Liu WT, Ding HL, Lü CW (2017) New J Chem 41:12225

    Article  CAS  Google Scholar 

  21. Gao G, Li XJ, An Y, Lü CW (2022) Spectrochim Acta A 270:120784

    Article  CAS  Google Scholar 

  22. Sperger T, Sanhueza IA, Schoenebeck F (2016) Accounts Chem Res 49:1311

    Article  CAS  Google Scholar 

  23. Hamama WS, Ibrahim ME, Raoof HA, Zoorob HH (2017) Res Chem Intermed 43:6259

    Article  CAS  Google Scholar 

  24. Ye DY, Dong ZY, Pu YQ, Huang GW, An Y, Lü CW (2020) Dyes Pigment 174:108016

    Article  CAS  Google Scholar 

  25. Ma XS, Tao FR, Zhang Y, Li TD, Raymo FM, Cui Y (2017) J Mater Chem A 5:14343

    Article  CAS  Google Scholar 

  26. Ahmed M, Hameed S, Ihsan A, Naseer MM (2017) Sens Actuator B 248:57

    Article  CAS  Google Scholar 

  27. An H, Shangguan MQ, Guo BG, Yang JH, Hou LX (2020) Microchem J 157:105117

    Article  CAS  Google Scholar 

  28. Cheng YY, Zhu J, Liu YJ (2014) Chem Phys Lett 591:156

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful for Scientific Research Fund of Liaoning Provincial Education Department (No. LJKQZ2021092).

Author information

Authors and Affiliations

Authors

Contributions

Chengwei Lü contributed to the study conception and design. Material preparation and data collection were performed by Xuejiao Li, Yanxin Hu and Weijie Huang. Analysis was conducted by Xuejiao Li and Weiran Li. The first draft of the manuscript was written by Xuejiao Li, Ge Gao and Yue An. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chengwei Lü.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

There is no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1178 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Hu, Y., Huang, W. et al. Further Develop 1,3,4-Thiadiazole Based Probe to Effectively Detect 2,4,6-Trinitrophenol with the Help of DFT Calculations. J Fluoresc 32, 1601–1610 (2022). https://doi.org/10.1007/s10895-022-02953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02953-y

Keywords

Navigation