Skip to main content
Log in

Development of Optical Biosensor for the Detection of Glutamine in Human Biofluids Using Merocyanine Dye

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Merocyanine dye based fluorescent organic compound has been synthesized for the detection of glutamine. The probe showed remarkable fluorescent intensity with glutamine through ICT (Intermolecular Charge Transfer Mechanism). Hence, it is tested for the detection of glutamine using colorimetric and fluorimetric techniques in physiological and neutral pH (7.2). Under optimized experimental conditions, the probe detects glutamine selectively among other interfering biomolecules. The probe has showed a LOD (lower limit of detection) of 9.6 × 10–8 mol/L at the linear range 0–180 µM towards glutamine. The practical application of the probe is successfully tested in human biofluids.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All relevant data are within the paper and its Supporting Information files.

References

  1. Alil J, Najeeb J, Alil MA, Aslam MF, Raza A (2017) J Biosens Bioelectron 8:1–9

    Google Scholar 

  2. Stetter JR, Hesketh PJ, Hunter GW (2006) Electrochem Soc Interface 15:66–69

    Article  CAS  Google Scholar 

  3. Fadel FI, Elshamaa MF, Essam RG, Elghoroury EA, Saeed GS, Toukhy SE, Ibrahim MH (2014) Int J Biomed Sci 10:36–42

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Choi YK, Park KG (2018) Biomol Ther 26:19–28

    Article  CAS  Google Scholar 

  5. Shimmura C, Suda S, Tsuchiya KJ, Hashimoto K, Ohno K, Matsuzaki H, Iwata K, Matsumoto K, Wakuda T, Kameno Y, Suzuki K (2011) PLoS One 6:25340–25346

    Article  Google Scholar 

  6. Watford M (2018) J Nutr 138:2003–2007

    Article  Google Scholar 

  7. Counihan JL, Grossman EA, Nomura DK (2018) Chem Rev 118:6893–6923

    Article  CAS  Google Scholar 

  8. Zhang J, Pavlova NN, Thompson CB (2017) EMBO 36:1302–1315

    Article  CAS  Google Scholar 

  9. Lukey MJ, Wilson KF, Cerione RA (2013) Future Med Chem 5:1685–1700

    Article  CAS  Google Scholar 

  10. Valeur B, Santos MNB (2011) J Chem Educ 88:731–738

    Article  CAS  Google Scholar 

  11. Still ER, Yuneva MO (2017) Br J Cancer 116:1375–1381

    Article  Google Scholar 

  12. Mehrotra P (2016) J Oral Biol Craniofac Res 6:153–159

    Article  Google Scholar 

  13. Jin L, Alesi GN, Kang S (2016) Oncogene 35:3619–3625

    Article  CAS  Google Scholar 

  14. Stefano LD, Rotiroti L, Rendina I, Moretti L, Scognamiglio V, Rossi M, Auria SD (2006) Biosens Bioelectron 21:1664–1667

    Article  Google Scholar 

  15. Cattaneo MV, Luong JHT, Mercille S (1992) Biosens Bioelectron 7:329–334

    Article  CAS  Google Scholar 

  16. Forni A, Lucenti E, Bottab C, Cariati E (2018) J Mater Chem C 6:4603–4626

    Article  CAS  Google Scholar 

  17. Boyr F, Botre C, Lorenti G, Mazzeij F, Porcellio F, Scibonao G (1993) J Pharm Biomed Anal 11:679–686

    Article  Google Scholar 

  18. Pejcic FB, Marco RD, Parkinson G (2006) Analyst 131:1079–1090

    Article  CAS  Google Scholar 

  19. Tsujino L, Miyagi K, Sampson RW, Sieber F (2006) Photochem Photobiol 82:458–465

    Article  CAS  Google Scholar 

  20. Guo Z, Kim G-H, Shin I, Yoon J (2012) Biomaterials 33:7818–7827

    Article  CAS  Google Scholar 

  21. Su B, Chen FZ, Wang QM (2013) J Org Chem 78:2775–2779

    Article  CAS  Google Scholar 

  22. Cuihua X, Venkat RRD, Haiying L (2006) Macromolecules 39:5747–5752

    Article  Google Scholar 

  23. Ponnuvel K, Ramamoorthy J, Sivaraman G, Padmini V (2018) ChemistrySelect 3:12150–12154

    Article  Google Scholar 

  24. Adak AK, Dutta B, Manna SK, Sinha C (2019) ACS Omega 4:18987–18995

    Article  CAS  Google Scholar 

  25. Han J, Burgess K (2010) Chem Rev 110:2709–2728

    Article  CAS  Google Scholar 

  26. Lin X, Chun L, Hua J (2009) Org Lett 11:1655–1658

    Article  Google Scholar 

  27. Senthilkumar T, Asha SK (2015) Macromolecules 48:3449–3461

    Article  CAS  Google Scholar 

  28. Ellairaja S, Shenbagavalli K, Ponmariappan S, Vasantha VS (2017) Biosens Bioelectron 91:82–88

    Article  CAS  Google Scholar 

  29. Liu L, Lin H (2014) Anal Chem 86:8829–8834

    Article  CAS  Google Scholar 

  30. Ao H, Feng H, Zhao M, Zhao M, Chen J, Qian Z (2017) ACS Sens 2:1692–1699

    Article  CAS  Google Scholar 

  31. Udhayakumari D, Naha S, Velmathi S (2017) Anal Methods 9:552–578

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02, Gaussian Inc., Wallingford, CT

  33. (a). Grimme S (2006) J Comput Chem 27:1787–1799 (b). Deepa A, Padmini V (2019) J Fluoresc 29:813–818

  34. Stefano LD, Rossi M, Staiano M, Mamone G, Parracino A, Rotiroti L, Rendina I, Rossi M, Auria SD (2006) J Proteome Res 5:1241–1245

    Article  Google Scholar 

Download references

Acknowledgements

The author VS acknowledged DST, New Delhi for the INSPIRE fellowship (IF180132). Authors thank for financial support under DST-IRHPA, FIST, RUSA-MKU and PURSE for instrument facilities.

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

Vijayakumar Sathya: Conceptualization, Writing-original draft. Appadurai Deepa: Revising the article. Lakshmi Kandhan Sangeetha: Revising the article. Venkatesan Srinivasadesikan: Software resources. Shyi-Long Lee: Software resources. Vediappen Padmini: Supervision, Writing-review.

Corresponding author

Correspondence to Vediappen Padmini.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors have no conflict of interest in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The organic sensor of merocyanine dye was synthesized by a simple condensation method with moderate yield.

• The dye as a sensor detects the glutamine with high fluorescence intensity.

• The sensor was selectively detects glutamine while interfering other biomolecules and biologically important metals.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6454 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathya, V., Deepa, A., Sangeetha, L.K. et al. Development of Optical Biosensor for the Detection of Glutamine in Human Biofluids Using Merocyanine Dye. J Fluoresc 32, 1389–1396 (2022). https://doi.org/10.1007/s10895-022-02937-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02937-y

Keywords

Navigation