Skip to main content
Log in

Solvent Effects on the Photophysical Properties of a Donor–acceptor Based Schiff Base

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this work, a donor–acceptor substituted aromatic system ((E)-N-((E)-3-(4 (dimethylamino)phenyl) allylidene)-4-(trifluoromethyl) benzenamine (DPATB) has been synthesized and its detailed photophysics of intramolecular charge transfer process have been explored on the basis of steady state absorption, fluorescence and time resolved spectroscopy in combination with density functional theory calculations. Large solvent dependency fluorescence spectral shift and the calculated large excited state dipole moment clearly indicate an efficient charge transfer occurring from the donor group to the acceptor moiety in the excited state. Effect on addition of acid and pH on steady state spectral properties further reveals excited state charge transfer character. Quantum chemical calculations were performed in order to study the conformation and polarity of DPATB at their ground as well as excited electronic states. The HOMO and LUMO molecular orbital pictures are obtained at DFT level using B3LYP functional and 6–311 + g(d,p) basis set which clearly support excited state intramolecular charge transfer process. The molecular electrostatic potential maps for the optimized ground state, donor twisted and acceptor twisted geometry shed insight on the electrostatic potential and charge distribution in a system which gives information about the reacting site of the probe and nature of the reaction.

Graphical abstract

In this work, detailed photophysics of excited state intramolecular charge transfer process in donor–acceptor system (DPATB) was evaluated using steady state and time-resolved fluorescence spectroscopy in combination with density functional theory calculations. Large solvent dependency fluorescence spectral shift and the calculated large excited state dipole moment clearly indicate an efficient charge transfer occurring in DPATB. Molecular orbital pictures as obtained from DFT based computational analysis reveals a significant change in the distribution of electron density upon transition from HOMO to LUMO which confirms an ICT process occurring from the donor group to the acceptor moiety in the excited state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme I
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All the data associated with this research has been presented in this paper.

Code Availability

Not applicable.

References

  1. Bhattacharyya K, Chowdhury M (1993) Environmental and magnetic field effects on exciplex and twisted charge transfer emission. Chem Rev 93:507–535

    Article  CAS  Google Scholar 

  2. Verbouwe W, Viaene L, Van der Auweraer M, De Schryver FC, Masuhara H, Pansu R, Faure J (1997) Photoinduced Intramolecular Charge Transfer in Diphenylamino-Substituted Triphenylbenzene, Biphenyl, and Fluorene. J Phys Chem A 101:8157–8165

    Article  CAS  Google Scholar 

  3. Maus M, Rettig W (2002) The Excited State Equilibrium between Two Rotational Conformers of a Sterically Restricted Donor-Acceptor Biphenyl As Characterized by Global Fluorescence Decay Analysis. J Phys Chem A 106:2104–2111

    Article  CAS  Google Scholar 

  4. Tamai N, Nomoto T, Tanaka F, Hirata Y, Okada T (2002) Solvation Dynamics of the Excited 1, 2-(p-Cyano-p‘-Methoxydiphenyl)-Ethyne. J Phys Chem A 106:2164–2172

    Article  CAS  Google Scholar 

  5. Nad S, Kumbhakar M, Pal H (2003) Photophysical Properties of Coumarin-152 and Coumarin-481 Dyes: Unusual Behavior in Nonpolar and in Higher Polarity Solvents. J Phys Chem A 107:4808–4816

    Article  CAS  Google Scholar 

  6. Yang JS, Liau KL, Wang CM, Hwang CY (2004) Substituent-Dependent Photoinduced Intramolecular Charge Transfer in N-Aryl-Substituted trans-4-Aminostilbenes. J Am Chem Soc 126:12325–12335

    Article  CAS  PubMed  Google Scholar 

  7. Singh AK, Ramakrishna G, Ghosh HN, Palit DK (2004) Photophysics and Ultrafast Relaxation Dynamics of the Excited States of Dimethylaminobenzophenone. J Phys Chem A 108:2583–2597

    Article  CAS  Google Scholar 

  8. Singh TS, Mitra S, Chandra AK, Tamai N, Kar S (2008) A combined experimental and theoretical study on photoinduced intramolecular charge transfer in trans-ethyl p-(dimethylamino)cinamate. J Photochem Photobiol A: Chem 197:295–305

    Article  CAS  Google Scholar 

  9. Jana S, Dalapati S, Ghosh S, Kar S, Guchhait N (2011) Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation. J Mol Struct 998:136–143

    Article  CAS  Google Scholar 

  10. Lippert E, Luder W, Boss H (1962) Advances in Molecular Spectroscopy, A. Mangini, (Edn.) Pergamon Press, Oxford

  11. Das P, Mallick A, Chakravarty A, Halder B, Chattopadhyay N (2006) Effect of nanocavity confinement on the rotational relaxation dynamics: 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine in micelles. J Chem Phys 125:044516 (1–6)

  12. Ashby KD, Das K, Petrich JW (1997) The Effect of Micelles on the Steady-State and Time-Resolved Fluorescence of Indole, 1-Methylindole, and 3-Methylindole in Aqueous Media. Anal Chem 69:1925–1930

    Article  CAS  Google Scholar 

  13. Marder SR, Perry JW (1994) Nonlinear Optical Polymers: Discovery to Market in 10 Years?. Science 263:1706–1707

  14. Verbiest T, Burland DM, Jurich MC, Lee VY, Miller RD, Volksen W (1995) Exceptionally Thermally Stable Polyimides for Second-Order Nonlinear Optical Applications. Science 268:1604–1606

    Article  CAS  PubMed  Google Scholar 

  15. Morozumi T, Anada T, Nakamura H (2001) New Fluorescent “Off-On” Behavior of 9-Anthryl Aromatic Amides through Controlling the Twisted Intramolecular Charge Transfer Relaxation Process by Complexation with Metal Ions. J Phys Chem B 105:2923–2931

  16. Yang JS, Lin YD, Lin YH, Liao FL (2004) Zn(II)-Induced Ground-State π-Deconjugation and Excited-State Electron Transfer in N, N-Bis(2-pyridyl)amino-Substituted Arenes. J Org Chem 69:3517–3525

    Article  CAS  PubMed  Google Scholar 

  17. Albota M, Beljonne D, Bredas JL, Ehrlich JE, Fu JY, Heikal AA, Hess SE, Kogej T, Levin MD, Marder SR, McCord-Maughon D, Perry JW, Rockel H, Rumi M, Subramaniam G, Webb WW, Wu XL, Xu C (1998) Design of Organic Molecules with Large Two-Photon Absorption Cross Sections. Science 281:1653–1656

    Article  CAS  PubMed  Google Scholar 

  18. La Clair JJ (1999) An Atmospherically Driven Optical Switch. Angew Chem Int Ed 38:3045–3047

    Article  Google Scholar 

  19. Rotkiewicz K, Grellmann KH, Grabowski ZR (1973) Reinterpretation of the anomalous fluorescense of p-n,n-dimethylamino-benzonitrile. Chem Phys Lett 19:315–318

  20. Schuddeboom W, Jonker SA, Warman JM, Leinhos U, Kuhnle W, Zachariasse K (1992) Excited-State Dipole Moments of Dual Fluorescent 4 (Dialkylamino) benzonitriles. Influence of Alkyl Chain Length and Effective Solvent Polarity. J Phys Chem 96:10809–10819

    Article  CAS  Google Scholar 

  21. Sobolewski AL, Domcke W (1996) Charge transfer in aminobenzonitriles: do they twist? Chem Phys Lett 250:428–436

    Article  CAS  Google Scholar 

  22. Sobolewski AL, Sudholt W, Domcke W (1998) Ab Initio Investigation of Reaction Pathways for Intramolecular Charge Transfer in Dimethylanilino Derivatives. J Phys Chem A 102:2716–2722

    Article  CAS  Google Scholar 

  23. Bangal PR, Chakravorti S (1998) Photophysics of 4-dimethylamino cinnamic acid in different environments. J Photochem Photobiol A: Chem 116:191–202

    Article  CAS  Google Scholar 

  24. Rappoport D, Furche F (2004) Photoinduced Intramolecular Charge Transfer in 4-(Dimethyl)aminobenzonitrile - A Theoretical Perspective. J Am Chem Soc 126:1277–1284

    Article  CAS  PubMed  Google Scholar 

  25. Kohn A, Hattig C (2004) On the Nature of the Low-Lying Singlet States of 4-(Dimethyl-amino)benzonitriles. J Am Chem Soc 126:7399–7410

    Article  PubMed  CAS  Google Scholar 

  26. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures. Chem Rev 103:3899–4031

    Article  PubMed  Google Scholar 

  27. Chakraborty A, Kar S, Guchhait N (2006) Secondary amino group as charge donor for the excited state intramolecular charge transfer reaction in trans-3-(4-monomethylamino-phenyl)-acrylic acid: Spectroscopic measurement and theoretical calculations. J Photochem Photobiol A: Chem 181:246–256

    Article  CAS  Google Scholar 

  28. Bangal PR, Panja S, Chakravorti S (2001) Excited state photodynamics of 4-N, N-dimethylamino cinnamaldehyde: A solvent dependent competition of TICT and intermolecular hydrogen bonding. J Photochem Photobiol A: Chem 139:5–16

    Article  CAS  Google Scholar 

  29. Singh TS, Mitra S (2007) Fluorescence behavior of intramolecular charge transfer state in trans-ethyl p-(dimethylamino)cinamate. J Lumin 127:508–514

    Article  CAS  Google Scholar 

  30. Chakraborty A, Ghosh S, Kar S, Nath DN, Guchhait N (2009) Dual emission from (E)-3-(4-methylamino-phenyl)-acrylic acid ethyl ester (MAPAEE) and its application as fluorescence probe for studying micellar and protein microenvironment. J Mol Struct 917:148–157

    Article  CAS  Google Scholar 

  31. Singh RB, Mahanta S, Kar S, Guchhait N (2008) Spectroscopic and theoretical evidence for the photoinduced twisted intramolecular charge transfer state formation in N, N-dimethylaminonaphthyl-(acrylo)-nitrile. J Lumin 128:1421–1430

    Article  CAS  Google Scholar 

  32. Ghosh S, Chakraborty A, Kar S, Guchhait N (2009) Photo-induced charge transfer emission in (E)-3-(4-dimethylaminonaphthalen-1-yl)-acrylic acid and its use as metal ions fluorosensor. J Lumin 129:482–491

    Article  CAS  Google Scholar 

  33. Jana S, Ghosh S, Dalapati S, Kar S, Guchhait N (2011) Photoinduced intramolecular charge transfer phenomena in 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid. Spectrochim Acta Part A: Mol and Biomol Spect 78:463–468

    Article  CAS  Google Scholar 

  34. Paul BK, Samanta A, Kar S, Guchhait N (2010) Evidence for excited state intramolecular charge transfer reaction in donor-acceptor molecule 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid methyl ester: Experimental and quantum chemical approach. J Lumin 130:1258–1267

    Article  CAS  Google Scholar 

  35. Kothavale S, Sekar N (2016) A new type of triphenylamine based coumarin–rhodamine hybrid compound: synthesis, photophysical properties, viscosity sensitivity and energy transfer. RSC Adv 6:105387–105397

    Article  CAS  Google Scholar 

  36. Barik A, Kumbhakar M, Nath S, Pal H (2005) Evidence for the TICT mediated nonradiative deexcitation process for the excited coumarin-1 dye in high polarity protic solvents. Chem Phys 315:277–285

    Article  CAS  Google Scholar 

  37. Maity B, Chatterjee A, Seth D (2014) Photophysics of a Coumarin in Different Solvents: Use of Different Solvatochromic Models. Photochem Photobiol 90:734–746

    CAS  PubMed  Google Scholar 

  38. Zakerhamidi MS, Ghanadzadeh A, Moghadam M (2011) Intramolecular and intermolecular hydrogen-bonding effects on the dipole moments and photophysical properties of some anthraquinone dyes. Spectrochim Acta Part A: Mol and Biomol Spect 79:74–81

    Article  CAS  Google Scholar 

  39. Kothavale S, Bhalekar S, Sekar N (2018) Highly fluorescent blue-green emitting phenanthroimidazole derivatives: Detail experimental and DFT study of structural and donating group effects on fluorescence properties. Dyes Pigm 159:209–221

    Article  CAS  Google Scholar 

  40. Pujar GH, Wari MN, Steffi B, Varsha H, Kavita B, Yohannan PC, Santhosh C, Patil A, Inamdar SR (2017) A combined experimental and computational investigation of solvatochromism of nonpolar laser dyes: Evaluation of ground and singlet excited-state dipole moments. J Mol Liq 244:453–463

    Article  CAS  Google Scholar 

  41. Acemioglu B, Arik M, Efeoglu H, Onganer Y (2001) Solvent effect on the ground and excited state dipole moments of fluorescein. J Mol Struct (THEOCHEM) 548:165–171

    Article  CAS  Google Scholar 

  42. Etaiw SEDH, Fayed TA, Saleh NZ (2006) Photophysics of benzazole derived push–pull butadienes: A highly sensitive fluorescence probes. J Photochem Photobiol A: Chem 177:238–247

    Article  CAS  Google Scholar 

  43. Santos FS, Costa TMH, Stefani V, Goncalves PFB, Descalzo RR, Benvenutti EV, Rodembusch FS (2011) Synthesis, Characterization, and Spectroscopic Investigation of Benzoxazole Conjugated Schiff Bases. J Phys Chem A 115:13390–13398

    Article  CAS  PubMed  Google Scholar 

  44. Aaron JJ, Tines A, Gaye MD, Parkanyi C, Boniface TC, Bieze TWN (1991) Effects of solvent on the electronic absorption and fluorescence spectra of quinazolines, and determination of their ground and excited singlet-state dipole moments. Spectrochim Acta Part A: Mol Spect 47:419–430

    Article  Google Scholar 

  45. Parkanyi C, Stem-Beren MR, Martinez OR, Aaron JJ, MacNair MB, Arrieta AF (2004) Solvatochromic correlations and ground- and excited-state dipole moments of curcuminoid dyes. Spectrochim Acta Part A: Mol and Biomol Spect 60:1805–1810

    Article  CAS  Google Scholar 

  46. Jana S, Dalapati S, Alam MA, Guchhait N (2012) Fluorescent chemosensor for Zn(II) ion by ratiometric displacement of Cd(II) ion: A spectroscopic study and DFT calculation. J Photochem Photobiol A: Chem 238:7–15

    Article  CAS  Google Scholar 

  47. Fu Y, Li H, Hu W (2007) Small Molecular Chromogenic Sensors for Hg2+: A Strong, “Push-Pull” System Exists after Binding. Eur J Org Chem 2007:2459–2463

    Article  CAS  Google Scholar 

  48. Irie M (2000) Photochromism: Memories and Switches – Introduction. Chem Rev 100:1683–1684

    Article  CAS  PubMed  Google Scholar 

  49. Sliwa M, Létard S, Malfant I, Nierlich M, Lacroix PG, Asahi T, Masuhara H, Yu P, Nakatani K (2005) Design, Synthesis, Structural and Nonlinear Optical Properties of Photochromic Crystals: Toward Reversible Molecular Switches. Chem Mater 17:4727–4735

    Article  CAS  Google Scholar 

  50. Cozzi PG (2004) Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33:410–421

    Article  CAS  PubMed  Google Scholar 

  51. Zhuang X, Oyaizu K, Niu Y, Koshika K, Chen X, Nishide H (2010) Synthesis and Electrochemistry of Schiff Base Cobalt(III) Complexes and Their Catalytic Activity for Copolymerization of Epoxide and Carbon Dioxide. Macromol Chem Phys 211:669–676

    Article  CAS  Google Scholar 

  52. Ready JM, Jacobsen EN (2002) A Practical Oligomeric [(salen)Co] Catalyst for Asymmetric Epoxide Ring-Opening Reactions. Angew Chem Int Ed 41:1374–1377

    Article  CAS  Google Scholar 

  53. Jana S, Dalapati S, Guchhait N (2012) Proton Transfer Assisted Charge Transfer Phenomena in Photochromic Schiff Bases and Effect of −NEt2 Groups to the Anil Schiff Bases. J Phys Chem A 116:10948–10958

    Article  CAS  PubMed  Google Scholar 

  54. Ziolek M, Kubicki J, Maciejewski A, Naskrecki R, Grabowska A (2004) An ultrafast excited state intramolecular proton transfer (ESPIT) and photochromism of salicylideneaniline (SA) and its ‘“double”’ analogue salicylaldehyde azine (SAA). A controversial case. Phys Chem Chem Phys 6:4682–4689

    Article  CAS  Google Scholar 

  55. Joshi H, Kamounah FS, Gooijer C, van der Zwan G, Antonov L (2002) Excited state intramolecular proton transfer in some tautomeric azo dyes and schiff bases containing an intramolecular hydrogen bond. J Photochem Photobiol A: Chem 152:183–191

    Article  CAS  Google Scholar 

  56. Ohshima A, Momotake A, Arai T (2004) Photochromism, thermochromism, and solvatochromism of naphthalene-based analogues of salicylideneaniline in solution. J Photochem Photobiol A: Chem 162:473–479

    Article  CAS  Google Scholar 

  57. Ortiz-Sanchez JM, Gelabert R, Moreno M, Lluch JM (2008) Electronic-structure and quantum dynamical study of the photochromism of the aromatic Schiff base salicylideneaniline. J Chem Phys 129:214308 (1–11)

  58. Singh TS, Mitra S (2007) Fluorescence behavior of intramolecular charge transfer probe in anionic, cationic, and nonionic micelles. J Colloid Interface Sci 311:128–134

    Article  CAS  PubMed  Google Scholar 

  59. Zachariasse KA, Kozankiewicz B, Kühnle W (1984) In: Mittal KL, Lindmann B (eds) Surfactants in Solution, vol 1. Plenum, New York, p 565

    Chapter  Google Scholar 

  60. Stubbs CD, Williams BW (1991) In: Lacowicz JR (ed) Topics in Fluorescence Spectroscopy, vol 3. Plenum, New York, p 331

    Google Scholar 

  61. Perry JL, Il’ichev YV, Kempf VR, McClendon J, Park JG, Manderville RA, RükerDockal FM, Simon JD (2003) Binding of Ochratoxin A Derivatives to Human Serum Albumin. J Phys Chem 107:6644–6647

    Article  CAS  Google Scholar 

  62. Barik A, Mishra B, Kunwar A, Priyadarsini KI (2007) Interaction of curcumin with human serum albumin: Thermodynamic properties, fluorescence energy transfer and denaturation effects. Chem Phys Lett 436:239–243

    Article  CAS  Google Scholar 

  63. Ghosh S, Guchhait N (2009) Chemically Induced Unfolding of Bovine Serum Albumin by Urea and Sodium Dodecyl Sulfate: A Spectral Study with the Polarity-Sensitive Charge-Transfer Fluorescent Probe (E)-3-(4-Methylaminophenyl)acrylic Acid Methyl Ester. Chem Phys Chem 10:1664–1671

    Article  CAS  PubMed  Google Scholar 

  64. Singh TS, Mitra S (2008) Fluorimetric studies on the binding of 4-(dimethylamino)cinnamic acid with micelles and bovine serum albumin. Photochem Photobiol Sci 7:1063–1070

    Article  CAS  PubMed  Google Scholar 

  65. Hamai S (2004) Effects of cyclodextrins on the fluorescence of 2- Methylnaphth[2,3-d]oxazole in aqueous solution. Bull Chem Soc Jpn 77:1459–1464

    Article  CAS  Google Scholar 

  66. Singh MK, Pal H, Koti ASR, Sapre AV (2004) Photophysical properties and rotational relaxation dynamics of neutral red bound to b-cyclodextrin. J Phys Chem A 108:1465–1474

    Article  CAS  Google Scholar 

  67. Singh TS, Mitra S (2007) Fluorimetric study on the charge transfer behavior of trans-ethyl-(p-dimethylamino cinnamate) and its derivative in cyclodextrin cavities. J Incl Phenom Macrocycl Chem 63:335–346

    Article  CAS  Google Scholar 

  68. Das S, Nath S, Singh TS, Chattopadhyay N (2020) Cavity size dependent stoichiometry of probe-cyclodextrin complexation: Experimental and molecular docking demonstration. J Photochem Photobio A: Chem 388:112158–112167

    Article  CAS  Google Scholar 

  69. Manna A, Chakravorti S (2012) Modification of a Styryl Dye Binding Mode with Calf Thymus DNA in Vesicular Medium: From Minor Groove to Intercalative. J Phys Chem B 116:5226–5233

    Article  CAS  PubMed  Google Scholar 

  70. Li XL, Hu YJ, Mi R, Li XL, Li PQ, Ouyang Y (2013) Spectroscopic exploring the affinities, characteristics, and mode of binding interaction of curcumin with DNA. Mol Biol Rep 40:4405–4413

    Article  CAS  PubMed  Google Scholar 

  71. Bag SS, Pradhan MK, Kundu R, Jana S (2013) Highly solvatochromic fluorescent naphthalimides: Design, synthesis, photophysical properties and fluorescence switch-on sensing of ct-DNA. Bioorg Med Chem Lett 23:96–101

    Article  CAS  PubMed  Google Scholar 

  72. Ghosh S, Kundu P, Chattopadhyay N (2016) DNA induced sequestration of a bioactive cationic fluorophore from the lipid environment: A spectroscopic investigation. J Photochem Photobio B: Biol 154:118–125

    Article  CAS  Google Scholar 

  73. Beigoli S, Rad AS, Askari A, Darban RA, Chamani J (2021) Isothermal titration calorimetry and stopped flow circular dichroism investigations of the interaction between lomefloxacin and human serum albumin in the presence of amino acids. J Biomol Struct Dyn 39:1029–1043

    Article  CAS  Google Scholar 

  74. Sharifi-Rad A, Mehrzad J, Darroudi M, Saberi MR, Chamani J (2019) Oil-in-water nanoemulsions comprising Berberine in olive oil: biological activities, binding mechanisms to human serum albumin or holotransferrin and QMMD simulations. J Biomol Struct Dyn 37:2265–2282

    Article  PubMed  CAS  Google Scholar 

  75. Chamani J, Moosavi-Movahedi AA (2006) Effect of n-alkyl trimethylammonium bromides on folding and stability of alkaline and acid-denatured cytochrome c: A spectroscopic approach. J Colloid Interface Sci 297:561–569

    Article  CAS  PubMed  Google Scholar 

  76. Moosavi-Movahedi AA, Chamani J, Gharanfoli M, Hakimelahi GH (2004) Differential scanning calorimetric study of the molten globule state of cytochrome c induced by sodium n-dodecyl sulfate. Thermochim Acta 409:137–144

    Article  CAS  Google Scholar 

  77. Omidvar Z, Asoodeh A, Chamani J (2013) Studies on the Antagonistic Behavior Between Cyclophosphamide Hydrochloride and Aspirin with Human Serum Albumin: Time-Resolved Fluorescence Spectroscopy and Isothermal Titration Calorimetry. J Solution Chem 42:1005–1017

    Article  CAS  Google Scholar 

  78. Marjani N, Dareini M, Lotfabad MA, Pejhan M, Mokaberi P, Tehranizadeh ZA, Saberi MR, Chamani J (2022) Evaluation of the binding effect and cytotoxicity assay of 2-Ethyl-5-(4-methylphenyl) pyramido pyrazole ophthalazinetrione on calf thymus DNA: spectroscopic, calorimetric, and molecular dynamics approaches. Luminescence 37:310–322

    Article  CAS  PubMed  Google Scholar 

  79. Feizabadi NZ, Tehranizadeh ZA, Rad AS, Mokaberi P, Nosrati N, Hashemzadeh F, Rahimi HR, Saberi MR, Chamani J (2021) Determining the Interaction Behavior of Calf Thymus DNA with Anastrozole in the Presence of Histone H1: Spectroscopies and Cell Viability of MCF-7 Cell Line Investigations. DNA Cell Biol 40:1039–1051

    Article  CAS  Google Scholar 

  80. Dareini M, Tehranizadeh ZA, Marjani N, Taheri R, Firoozabadi SA, Talebi A, Eidgahi NN, Saberi MR, Chamani J (2020) A novel view of the separate and simultaneous binding effects of docetaxel and anastrozole with calf thymus DNA: Experimental and in silico approaches. Spectrochim Acta Part A: Mol and Biomol Spect 228:117528–117541

    Article  CAS  Google Scholar 

  81. Gude CC, Rettig W (1998) Dual Fluorescence and Multiple Charge Transfer Nature in Derivatives of N-Pyrrolobenzonitrile. J Phys Chem A 102:7754–7760

    Article  Google Scholar 

  82. Dean JA (1987) Lange’s Handbook of Chemistry, thirteenth. Mcgraw-Hill Professional, New York

    Google Scholar 

  83. Nad S, Pal H (2001) Unusual Photophysical Properties of Coumarin-151. J Phys Chem A 105:1097–1106

    Article  CAS  Google Scholar 

  84. Mataga N, Chosrowjan H, Taniguchi S (2005) Ultrafast charge transfer in excited electronic states and investigations into fundamental problems of exciplex chemistry: Our early studies and recent developments. J Photochem Photobiol C: Photochem Rev 6:37–79

    Article  CAS  Google Scholar 

  85. Singh TS, Moyon NS, Mitra S (2009) Effect of solvent hydrogen bonding on the photophysical properties of intramolecular charge transfer probe trans-ethyl p-(dimethylamino) cinamate and its derivative. Spectrochim Acta Part A: Mol and Biomol Spect 73:630–636

    Article  CAS  Google Scholar 

  86. Moosavi-Movahedi AA, Hakimelahi S, Chamani J, Khodarahmi GA, Hassanzadeh F, Fen-Luo T, Ly TW, Shia KS, Yen CF, Jain ML, Kulatheeswaran R, Xue C, Pasdar M, Hakimelahia GH (2003) Design, Synthesis, and Anticancer Activity of Phosphonic Acid Diphosphate Derivative of Adenine-Containing Butenolide and Its Water-soluble Derivatives of Paclitaxel with High Antitumor Activity. Bioorg Med Chem 11:4303–4313

    Article  CAS  PubMed  Google Scholar 

  87. Reichardt C (2003) Solvents and Solvent Effects in Organic Chemistry, 3rd edn. Wiley-VCH, Verlag GmbH, Weinheim, Germany

    Google Scholar 

  88. Reichardt C (1994) Solvatochromic Dyes as Solvent Polarity Indicators. Chem Rev 94:2319–2358

    Article  CAS  Google Scholar 

  89. Forster Th (1950) Elektrolytische Dissoziation angeregter Moleküle. Zeitschrift für Elektrochemie und angewandte physikalische Chemie 54:42–62

    CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from SERB (project file No. EEQ/2019/000210), Government of India was acknowledged by Dr. T. Sanjoy Singh. The authors are indebted to Prof. Samita Basu and her research scholars for their help in fluorescence lifetime measurements. The authors are also highly acknowledged to CSIR-NEIST, Jorhat, CIF, IIT Guwahati for providing NMR and Mass spectra.

Funding

SERB, Government of India (Project file No. EEQ/2019/000210).

Author information

Authors and Affiliations

Authors

Contributions

Surjatapa Nath: Investigation, Validation, Data curation, Writing—original draft. Barnali Bhattacharya: Investigation, Validation, Data curation. Utpal Sarkar: Formal analysis, Data curation. Takhellambam Sanjoy Singh: Methodology, Conceptualization, Writing—review and editing, Resources, Supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to T. Sanjoy Singh.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

➢ Detailed photophysics of a synthesized donor–acceptor system has been investigated

➢ Newly synthesized compound is found to exhibit intramolecular charge transfer

➢ Protonation at the donor moiety restricts the charge transfer phenomena

➢ HOMO–LUMO picture depicts the intramolecular transfer of electron density

➢ MEP maps clearly visualized the redistribution of electronic charge separation

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2148 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, S., Bhattacharya, B., Sarkar, U. et al. Solvent Effects on the Photophysical Properties of a Donor–acceptor Based Schiff Base. J Fluoresc 32, 1321–1336 (2022). https://doi.org/10.1007/s10895-022-02905-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02905-6

Keywords

Navigation