Skip to main content
Log in

Magnetically Reusable and Well-dispersed Nanoparticles for Oxygen Detection in Water

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this study, we aimed to synthesize magnetically well-dispersed nanosensors for detecting dissolved oxygen (DO) in water, and explore their biological applications. Firstly, we synthesized two kinds of magnetic nanoparticle with average sizes of approximately 82 nm by one-step emulsion polymerization: polystyrene magnetic nanoparticles (Fe3O4@Os1-PS) and polymethylmethacrylate magnetic nanoparticles (Fe3O4@Os1-PMMA). Both types of nanoparticle present good dispersibility and fluorescence stability. The nanoparticles could be used as oxygen sensors that exhibited a high DO-sensitivity response in the range 0-39.30 mg/L, with a strong linear relationship. The nanoparticles have good magnetic properties, and so they could be recycled by magnet for further use. Recovered Fe3O4@Os1-PS still presented high stability after continued use in oxygen sensing for one month. Furthermore, Fe3O4@Os1-PS was employed for detecting the bacterial oxygen consumption of Escherichia coli (E-coli) to monitor the metabolism of bacteria. The results show that Fe3O4@Os1-PS provide high biocompatibility and non-toxicity. Polystyrene magnetic nanoparticles therefore present significant potential for application in biological oxygen sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data and material are available within the manuscript.

References

  1. Zhang P, Guo JH, Wang Y, Pang WQ (2002) Incorporation of luminescent tris(bipyridine) ruthenium (II) complex in mesoporous silica spheres and their spectroscopic and dissolved oxygen-sensing properties. Mater Lett 53:400–405. https://doi.org/10.1016/S0167-577X(01)00514-6

    Article  CAS  Google Scholar 

  2. Chu CS, Sung TW, Lo YL (2013) Enhanced optical dissolved oxygen sensing property based on Pt(II) complex and metal-coated silica nanoparticles embedded in sol–gel matrix. Sensors Actuat B Chem 185:287–292. https://doi.org/10.1016/j.snb.2013.05.011

    Article  CAS  Google Scholar 

  3. Papkovsky DB, Dmitriev RI (2013) Biological detection by optical dissolved oxygen sensing. Chem Soc Rev 42:8700–8732. https://doi.org/10.1039/C3CS60131E

    Article  CAS  PubMed  Google Scholar 

  4. Lu SS, Xu W, Zhang JL, Chen YY, Xie L, Yao QH, Jiang YQ, Wang YR, Chen X (2016) Facile synthesis of a ratiometric dissolved oxygen nanosensor for bacteriaular imaging. Biosens Bioelectron 86:176–184. https://doi.org/10.1016/j.bios.2016.06.050

    Article  CAS  PubMed  Google Scholar 

  5. Morris RL, Schmidt TM (2013) Shallow Breathing: Bacterial Life at Low O2. Nat Rev Microbiol 11:205–212. https://doi.org/10.1038/nrmicro2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang XH, Peng HS, Yang L, You FT, Teng F, Hou LL, Wolfbeis OS (2014) Targetable Phosphorescent Oxygen Nanosensors for the assessment of tumor mitochondrial dysfunction by Monitoring the Respiratory Activity. Angew Chem 126:12679–12683. https://doi.org/10.1002/ange.201405048

    Article  Google Scholar 

  7. Will Y, Hynes J, Ogurtsov VI, Papkovsky DB (2006) Analysis of Mitochondrial Function Using Phosphorescent Oxygen-Sensitive Probes. Nat Protoc 1:2563–2572. https://doi.org/10.1038/nprot.2006.351

    Article  CAS  PubMed  Google Scholar 

  8. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schrebier SL, Cantley LC (2008) The M2 Splice Isoform of Pyruvate Kinase is Important for Cancer Metabolism and Tumour Growth. Nature 452:230–233. https://doi.org/10.1038/nature06734

    Article  CAS  PubMed  Google Scholar 

  9. Winkler LW (1953) Die Bestimmung des im Wasser gelosten Sauerstoffee. Ber Dtsch Chem Ges 21:2843–2855

    Article  Google Scholar 

  10. Clark JR LC, Wolf R, Granger D, Taylor Z (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6:189–193. https://doi.org/10.1152/jappl.1953.6.3.189

  11. Su FY, Alam R, Mei Q, Tian YQ, Youngbull C, Johnson RH, Meldrum DR (2012) Nanostructured oxygen sensor - using mibacteriaes to incorporate a hydrophobic platinum porphyrin. PLoS One 7:e33390

  12. Im SH, Khali GE, Callis J, Ahn BH, Gouterman M, Xia Y (2005) Synthesis of polystyrene beads loaded with dual luminophors for self-referenced dissolved oxygen sensing. Talanta 67:492–497. https://doi.org/10.1016/j.talanta.2005.06.046

    Article  CAS  PubMed  Google Scholar 

  13. Xu W, Lu SS, Xu MX, Jiang YQ, Wang YR, Chen X (2016) Simultaneous imaging of intrabacteriaular pH and O2 using functionalized semiconducting polymer dots. J Mater Chem B 4:292–298. https://doi.org/10.1039/C5TB02071A

    Article  CAS  PubMed  Google Scholar 

  14. Lu HG, Jin YG, Tian YQ, Zhang WW, Holla MR, Meldrum DR (2011) New ratio metric optical oxygen and pH dual sensors with threee mission colors for measuring photo synthetic activity in cyano bacteria. J Mater Chem C 21:19293–19301. https://doi.org/10.1039/C1JM13754A

    Article  CAS  Google Scholar 

  15. Zhou XS, Su FY, Tian YQ, Johnson RH, Meldrum DR (2011) Platinum (II) porphyrin containing thermoresponsive poly(N-isopropylacrylamide) copolymer as fluorescence dual oxygen and temperature. Sensor Actuators B Chem 159:135–141. https://doi.org/10.1016/j.snb.2011.06.061

    Article  CAS  Google Scholar 

  16. Zhang CF, Ingram J, Schiff S, Xu J, Xiao M (2011) Probing oxygen consumption in epileptic brain slices with QDs-based FRET sensors. SPIEOPTO 7974:22–27. https://doi.org/10.1117/12.876341

    Article  CAS  Google Scholar 

  17. Wang YD, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43:3666–3761. https://doi.org/10.1039/C4CS00039K

    Article  CAS  PubMed  Google Scholar 

  18. Carraway ER, Demas JN, Degraff BA, Bacon JR (1991) Photo physics and photochemistry of oxygen sensors based on luminescent transition-metal complexes. Anal Chem 63:337–342. https://doi.org/10.1021/ac00004a007

    Article  CAS  Google Scholar 

  19. Mills A, Lepre A (1997) Controlling the response characteristics of luminescent porphyrin plastic film sensors for oxygen. Anal Chem 69:4653–4659. https://doi.org/10.1021/ac970430g

    Article  CAS  Google Scholar 

  20. O’Donovan C, Hynes J, Yashunski D, Papkovsky DB (2005) Phosphorescent oxygen-sensitive materials for biological applications. J Mater Chem 15:2946–2951. https://doi.org/10.1039/B501748C

    Article  Google Scholar 

  21. O’Riordan TC, Fitzgerald K, Ponomarev GV, Mackrill J, Hynes J, Taylor C, Papkovsky DB (2007) Sensing intracellular oxygen using near-infrared phosphorescent probes and live-cell fluorescence imaging. Am J Physiol Regul Integr Comp Physiol 292:R1613–R1620. https://doi.org/10.1152/ajpregu.00707.2006

    Article  CAS  PubMed  Google Scholar 

  22. Shi JY, Zhou YF, Jiang JP, Pan TT, Mei ZP, Wen JX, Yang C, Wang ZJ, Tian YQ (2019) Multi-arm polymers prepared by atom transfer radical polymerization (ATRP) and their electrospun films as oxygen sensors and pressure sensitive paints. Eur Polym J 112:214–221. https://doi.org/10.1016/j.eurpolymj.2019.01.008

    Article  CAS  Google Scholar 

  23. Li XL, Roussakis E, Cascales JP, Marks HL, Witthauer L, Evers M, Mansteinband D, Evans C (2021) Optimization of bright, highly flexible, and humidity insensitive porphyrin-based oxygen-sensing materials. J Mater Chem C 9:7555–7567. https://doi.org/10.1039/D1TC01164B

    Article  CAS  Google Scholar 

  24. Vinogradov SA, Lo LW, Jenkins WT, Evans SM, Koch C, Wilson DF (1996) Noninvasive Imaging of The Distribution in Oxygen in Tissue In Vivo Using Near-Infrared Phosphors. Biophys J 70:1609–1617. https://doi.org/10.1016/S0006-3495(96)79764-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Inglev R, Møller E, Højgaard J, Bang O, Janting J (2021) Optimization of All Polymer Optical Fiber Oxygen Sensors with Antenna Dyes and Improved Solvent Selection Using Hansen Solubility Parameters. Sensors 21:5. https://doi.org/10.3390/s21010005

    Article  CAS  Google Scholar 

  26. Lee WWS, K WW, Li XM, Leung YB, Chan CH, Chan KH, (1993) Halogenated Platinum Porphyrins as Sensing Materials for Luminescence-Based Oxygen Sensors. J Mater Chem 3:1031–1035. https://doi.org/10.1039/JM9930301031

    Article  CAS  Google Scholar 

  27. Qiao Y, Pan TT, Li JZ, Yang C, Wen JX, Zhong K, Wu SS, Su FY, Tian YQ (2019) Extracellular Oxygen Sensors Based on PtTFPP and Four-Arm Block Copolymers. Appl Sci 9:4404. https://doi.org/10.3390/app9204404

    Article  CAS  Google Scholar 

  28. Li JZ, Qiao Y, Pan TT, Zhong K, Wen JX, Wu SS, Su FY, Tian YQ (2018) Amphiphilic Fluorine-Containing Block Copolymers as Carriers for Hydrophobic PtTFPP for Dissolved Oxygen Sensing, Cell Respiration Monitoring and In Vivo Hypoxia Imaging with High Quantum Efficiency and Long Life time. Sensors 18:3752. https://doi.org/10.3390/s18113752

    Article  CAS  PubMed Central  Google Scholar 

  29. Mao YY, Zhao Q, Wu JC, Pan TT, Zhou BP, Tian YQ (2017) A highly sensitive and fast-responding oxygen sensor based on POSS-containing hybrid copolymer films. J Mater Chem C 5:135–141. https://doi.org/10.1039/C7TC03606J

    Article  Google Scholar 

  30. Zhang HL, Zhang ZG (2020) Ratiometric Sensor Based on PtOEP-C6/Poly (St-TFEMA) Film for Automatic Dissolved Oxygen Content Detection. Sensors 20:6175. https://doi.org/10.3390/s20216175

    Article  CAS  PubMed Central  Google Scholar 

  31. Deng MY, Qiao Y, Liu C, Wang ZJ, Shi JY, Pan TT, Mao YY, Me ZP, Huang F, Tian YQ (2019) Tricolorcore/shell polymeric ratiometric nanosensors for intracellular glucose and oxygen dual sensing. Sensors Actuators B Chem 286:437–444. https://doi.org/10.1016/j.snb.2019.01.163

    Article  CAS  Google Scholar 

  32. Zhang K, Zhang HL, Lia WJ, Tian YQ, Lia S, Zhao JP, Li Y (2016) PtOEP/Ps composite particles based on fluorescent sensor for dissolved oxygen detection. Mater Lett 172:112–115. https://doi.org/10.1016/j.matlet.2016.02.119

    Article  CAS  Google Scholar 

  33. Mao YY, Mei ZP, Liang LF, Zhou BP, Tian YQ (2018) Robust and magnetically recoverable dual-sensor particles: Real-time monitoring of glucose and dissolved oxygen. Sensors Actuat B Chem 262:371–379. https://doi.org/10.1016/j.snb.2018.02.024

    Article  CAS  Google Scholar 

  34. Liang LF, Li G, Mei ZP, Shi JY, Mao YY, Pan TT, Liao CZ, Zhang JB, Tian YQ (2018) Preparation and application of ratiometric polystyrene-based nanoparticles as oxygen sensors. Anal Chim Acta 1030:194–201. https://doi.org/10.1016/j.aca.2018.05.017

    Article  CAS  PubMed  Google Scholar 

  35. Sun S, Zeng H (2002) Size-Controlled Synthesis of Magnetite Nanoparticles. J Am Chem Soc 124:8204–8205. https://doi.org/10.1021/ja026501x

    Article  CAS  PubMed  Google Scholar 

  36. Cheong S, Ferguson P, Feindel KW, Hermans LF, Callaghan PT, Meyer C, Slocombe A, Su CH, Cheng FY, Yeh CS, Ingham B, Toney MF, Tilley RD (2011) Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. Angew Chem Int Ed 50:4206–4209. https://doi.org/10.1002/ange.201100562

    Article  CAS  Google Scholar 

  37. Xiao C, Liu X, Mao S, Zhang L, Lu J (2017) Sub-micron-sized polyethylenimine-modified polystyrene/Fe3O4/chitosan magnetic composites for the efficient and recyclable adsorption of Cu(II) ions. Appl Surf Sci 394:378–385. https://doi.org/10.1016/j.apsusc.2016.10.116

  38. Xu JS, Zhao C, Hu TY, Chen X, Cao YH (2021) Rapid preparation of size‑tunable Fe3O4@SiO2 nanoparticles to construct magnetically responsive photonic crystals. J Nanopart Res 23:232. https://doi.org/10.1007/s11051-021-05342-x

Download references

Funding

This work was supported by National Natural Science Foundation of China (21574061, 21774054), Shenzhen Fundamental Research Programs (JCYJ20190809120013254), and Guangdong Industry Polytechnic (KJ2019-003 and 150124910).

Author information

Authors and Affiliations

Authors

Contributions

Methodology: Cui H. and Wu S.; Formal analysis and investigation: Cui H., Wang L., Sun X. and Zhang H.; Writing—original draft preparation: Cui H.; Writing—review and editing: Cui H., Wu S and Deng M.; Supervision: Wu S., Deng M. and Tian Y.

Corresponding authors

Correspondence to Shanshan Wu or Mengyu Deng.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1710 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Wu, S., Wang, L. et al. Magnetically Reusable and Well-dispersed Nanoparticles for Oxygen Detection in Water. J Fluoresc 32, 1621–1627 (2022). https://doi.org/10.1007/s10895-022-02899-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02899-1

Keywords

Navigation