Skip to main content
Log in

Pyridine-2-yl Quinoxaline (2-CPQ) Derivative As a Novel Pink Fluorophore: Synthesis, and Chemiluminescence Characteristics

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Quinoxaline derivatives are well-known N-heterocycles with pharmacological and fluorescence activities. Almost all quinoxaline derivatives with extensive π-conjugation have been introduced as fluorophores which emit blue and green light. For the first time, we designed and synthesized 6-chloro-2,3 di(Pyridine-2yl) quinoxaline (2-CPQ) as a pink fluorophore in acetonitrile medium by simple route at room temperature whitin 30 min. The synthesized quinoxaline was identified using 1H, 13C NMR, MS, and FT-IR spectroscopy. Our results showed that the iodine-catalyzed method for both oxidation and cyclization during the synthesis of quinoxaline from pyridine 2-carbaldehyde was straightforward, efficient, and clean. All of the mentioned characterization devices confirmed the synthesis of 2-CPQ.

Moreover, we studied the photophysical properties of the synthesized fluorophore in which The UV–Vis absorption spectrum of 2-CPQ in DMF were three peaks at 451, 518 and 556 nm. Based on photophysical properties investigation, 2-CPQ shows good fluorescence with maximum peaks 607 and 653 nm in DMF as solvent (фF = 0.21). Hence, the fluorophore was applied in the peroxyoxalate chemiluminescence system. The reaction of imidazole, H2O2, and bis (2,4,6-trichlorophenyl) oxalate (TCPO) can transfer energy to a 6-chloro-2,3 di(pyridine-2yl) quinoxaline. In this process, dioxetane was synthesized, which chemically initiated the electron exchange luminescence (CIEEL) mechanism and led to pink light emission. We anticipate our synthesized fluorophores 2-CPQ will have great potential applications in imaging and medical markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pereira JA, Pessoa AM, Cordeiro MN, Fernandes R, Prudêncio C, Noronha JP, Vieira M (2015) Quinoxaline, its derivatives and applications: A State of the Art review. Eur J Med Chem 5:664–672. https://doi.org/10.1016/j.ejmech.2014.06.058

    Article  CAS  Google Scholar 

  2. Sharma G, Abraham I, Tulsi P (2009) Synthesis of quinoxaline quinones and regioselectivity in their Diels-Alder cycloadditions. J Indian Chem 48:1590–1596

    Google Scholar 

  3. Nageswar YVD, Harsha Vardhan Reddy K, Ramesh K, Narayana Murthy S (2013) Recent developments in the synthesis of quinoxaline derivatives by green synthetic approaches. Org Prep Proced Int 45:1–27

    Article  CAS  Google Scholar 

  4. Malik MA, Dar OA, Gull P, Wani MY, Hashmi AA (2018) Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. Med Chem Comm 9(3):409–436. https://doi.org/10.1039/C7MD00526A

    Article  CAS  Google Scholar 

  5. Shamsi-Sani M, Shirini F, Abedini M, Seddighi M (2016) Synthesis of benzimidazole and quinoxaline derivatives using reusable sulfonated rice husk ash (RHA-SO3H) as a green and efficient solid acid catalyst. Res Chem Intermed 42:1091–1099. https://doi.org/10.1007/s11164-015-2075-5

    Article  CAS  Google Scholar 

  6. Aparicio OA, Attanasi P, Filippone R, Ignacio S, Lillini F, Mantellini F, Palacios JM, Santos D (2006) Straightforward access to pyrazines, piperazinones, and quinoxalines by reactions of 1, 2-diaza-1, 3-butadienes with 1, 2-diamines under solution, solvent-free, or solid-phase conditions. J Org Chem 71(16):5897–5905. https://doi.org/10.1021/jo060450v

    Article  CAS  PubMed  Google Scholar 

  7. Kunkuma V, Bethala LAPD, Bhongiri Y, Rachapudi BNP, Potharaju SSP (2011) An efficient synthesis of quinoxalines catalyzed by monoammonium salt of 12-tungstophosphoric acid. Eur J Chem 2(4):495–498. https://doi.org/10.5155/eurjchem.2.4.495-498.413

    Article  CAS  Google Scholar 

  8. Shi DQ, Ni SN, Shi JW, Dou GL, Li XY, Wang XS (2008) An efficient synthesis of polyhydroacridine derivatives by the three-component reaction of aldehydes, amines and dimedone in ionic liquid. J Heterocycl Chem 45(3):653–660. https://doi.org/10.1002/jhet.5570450303

    Article  CAS  Google Scholar 

  9. Antoniotti S, Duñach E (2002) Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1, 2-diamines. Tetrahedron Lett 43(22):3971–3973

    Article  CAS  Google Scholar 

  10. Abad N, Ramli Y, Ettahiri W, Ferfra S (2020) Quinoxaline derivatives: syntheses reactivities and biological properties. Moroccan J Heterocycl Chem. 19(2):1–62. https://doi.org/10.48369/IMIST.PRSM/jmch-v19i2.22352

  11. Izadyar A, Omer KM, Liu Y, Chen S, Xu X, Bard AJ (2008) Electrochemistry and electrogenerated chemiluminescence of quinoxaline derivatives. J Phys Chem. 18;112 (50):20027–32. https://doi.org/10.1021/jp807202d

  12. Qazvini NT, Zinatloo S (2011) Synthesis and characterization of gelatin nanoparticles using CDI/NHS as a non-toxic cross-linking system. J Mater Sci - Mater Med 22(1):63–6913. https://doi.org/10.1007/s10856-010-4178-2

    Article  CAS  PubMed  Google Scholar 

  13. Zinatloo AS, Taheri QN (2014) Inverse miniemulsion method for synthesis of gelatin nanoparticles in presence of CDI/NHS as a non-toxic cross-linking system. J Nanostruct 4(3):267–275. https://doi.org/10.1007/s10856-010-4178-2

    Article  CAS  Google Scholar 

  14. Zinatloo-Ajabshir Z. Zinatloo-Ajabshir S (2019) Preparation and characterization of Curcumin niosomal nanoparticles via a simple and eco-friendly route. J Nanostruct 9(4):784–790. https://doi.org/10.22052/JNS.2019.04.020

  15. Zinatloo-Ajabshir S, Mousavi-Kamazani M (2021) Recent advances in nanostructured Sn− Ln mixed-metal oxides as sunlight-activated nanophotocatalyst for high-efficient removal of environmental pollutants. Ceram Int 47:23702–23724. https://doi.org/10.1016/j.ceramint.2021.05.155

    Article  CAS  Google Scholar 

  16. Zinatloo-Ajabshir S, Heidari-Asil SA, Salavati-Niasari M (2022) Rapid and green combustion synthesis of nanocomposites based on Zn–Co–O nanostructures as photocatalysts for enhanced degradation of acid brown 14 contaminant under sunlight. Sep Purif Technol 280:119841. https://doi.org/10.1016/j.seppur.2021.119841

    Article  CAS  Google Scholar 

  17. Etemadi H, Afsharkia S, Zinatloo-Ajabshir S, Shokri E (2021) Effect of alumina nanoparticles on the antifouling properties of polycarbonate-polyurethane blend ultrafiltration membrane for water treatment. Polym Eng Sci 61(9):2364–2375

    Article  CAS  Google Scholar 

  18. Kricka L (2000) Application of bioluminescence and chemiluminescence in biomedical sciences. Meth Enzymol 305:333–345. https://doi.org/10.1016/S0076-6879(00)05498-7Get

    Article  CAS  Google Scholar 

  19. Yang L, Guan G, Wang S, Zhang Z (2012) Nano-anatase-enhanced peroxyoxalate chemiluminescence and its sensing application. J Phys Chem C 116(5):3356–3362. https://doi.org/10.1021/jp210316s

    Article  CAS  Google Scholar 

  20. Kazemi SY, Abedirad SM, Vaezi Z, Ganjali MR (2012) A study of chemiluminescence characteristics of a novel peroxyoxalate system using berberine as the fluorophore. Dyes Pigm 95(3):751–756. https://doi.org/10.1016/j.dyepig.2012.05.022

    Article  CAS  Google Scholar 

  21. Alvarez FJ, Parekh NJ, Matuszewski B, Givens RS, Higuchi T, Schowen R (1986) Multiple intermediates generate fluorophore-derived light in the oxalate/peroxide chemiluminescence system. J Am Chem Soc 108(20):6435–6437. https://doi.org/10.1021/ja00280a078

    Article  CAS  Google Scholar 

  22. Stevani CV, Silva SM, Baader WJ (2000) Studies on the mechanism of the excitation step in peroxyoxalate Chemiluminescence. Eur J Org Chem 2000(24):4037–4046

  23. Schuster GB (1979) Chemiluminescence of organic peroxides. Conversion of ground-state reactants to excited-state products by the chemically initiated electron-exchange luminescence mechanism. Acc Chem Res 12(10):366–373. https://doi.org/10.1021/ar50142a003

  24. Ciscato LF, Bartoloni FH, Bastos EL, Baader WJ (2009) Direct kinetic observation of the chemiexcitation step in peroxyoxalate Chemiluminescence. J Org Chem 74(23):8974–8979. https://doi.org/10.1021/jo901402k

    Article  CAS  PubMed  Google Scholar 

  25. Shimakawa Y, Morikawa T, Sakaguchi S (2010) Facile route to benzils from aldehydes via NHC-catalyzed benzoin condensation under metal-free conditions. Tetrahedron Lett 51(13):1786–1789. https://doi.org/10.1016/j.tetlet.2010.01.103

    Article  CAS  Google Scholar 

  26. 18. Miyashita A, Suzuki Y, Iwamoto KI, Higashino T (1994) Catalytic action of azolium salts. VI. preparation of benzoins and acyloins by condensation of aldehydes catalyzed by azolium salts. Chem Pharm Bull 42(12):2633–2635. https://doi.org/10.1248/cpb.42.2633

  27. Zhang Z, Xie C, Feng L, Ma C (2016) PTSA-catalyzed one-pot synthesis of quinoxalines using DMSO as the oxidant. Synth Commun 46(18):1507–1518. https://doi.org/10.1080/00397911.2016.1213297

    Article  CAS  Google Scholar 

  28. Xie C, Zhang Z, Yang B, Song G, Gao H, Wen L, Ma C (2015) An efficient iodine–DMSO catalyzed synthesis of quinoxaline derivatives. Tetrahedron 71(12):1831–1837. https://doi.org/10.1016/j.tet.2015.02.003

    Article  CAS  Google Scholar 

  29. De Jong GJ, Lammers N, Spruit FJ, Brinkman UT, Frei RW (1984) Optimization of a peroxyoxalate chemiluminescence detection system for the liquid chromatographic determination of fluorescent compounds. Chromatographia 18(3):129–133. https://doi.org/10.1007/BF02258768

    Article  Google Scholar 

  30. Shamsipur M, Chaichi MJ, Karami AR (2003) A study of peroxyoxalate-chemiluminescence of acriflavine. Spectrochim Acta A Mol Biomol Spectrosc 59(3):511–517. https://doi.org/10.1016/S1386-1425(02)00188-9

    Article  PubMed  Google Scholar 

  31. Samadi-Maybodi A, Akhoondi R, Chaichi MJ (2010) Studies of New Peroxyoxalate-H 2 O 2 Chemiluminescence System Using Quinoxaline Derivatives as Green Fluorophores. J Fluoresc 20(3):671–679. https://doi.org/10.1007/s10895-010-0601-9

    Article  CAS  PubMed  Google Scholar 

  32. Martelo L, Periyasami G, Fedorov AA, Baleizao C, Berberan-Santos MN (2019) Chemiluminescence of naphthalene analogues of luminol in solution and micellar media. Dyes Pigm 168:341–346. https://doi.org/10.1016/j.dyepig.2019.05.005

    Article  CAS  Google Scholar 

  33. Kazemi SY, Abedirad SM, Zali SH, Amiri M (2012) Hypericin from St. John’s Wort (hypericum perforatum) as a novel natural fluorophore for chemiluminescence reaction of bis (2, 4, 6-trichlorophenyl) oxalate–H2O2–imidazole and quenching effect of some natural lipophilic hydrogen peroxide scavengers. J Lumin 132(5):1226–1231. https://doi.org/10.1016/j.jlumin.2011.12.009

  34. Givens RS, Schowen RL, Birks JW (1989) Chemiluminescence and photochemical reaction detection in chromatography. VCH, New York, USA ([Chapter 5])

  35. Hadd AG, Seeber A, Birks JW (2000) Kinetics of two pathways in peroxyoxalate chemiluminescence. J Org Chem 65(9):2675–2683. https://doi.org/10.1021/jo9917487

    Article  CAS  PubMed  Google Scholar 

  36. Emteborg M, Pontén E, Irgum K (1997) Influence of imidazole and bis (trichlorophenyl) oxalate in the oxalyldiimidazole peroxyoxalate chemiluminescence reaction. Anal Chem 69(11):2109–2114. https://doi.org/10.1021/ac961225o

    Article  CAS  Google Scholar 

  37. Stevani CV, de Arruda Campos IP, Baader WJ (1996) Synthesis and characterisation of an intermediate in the peroxyoxalate chemiluminescence: 4-chlorophenyl O, O-hydrogen monoperoxyoxalate. J Chem Soc Perkin Trans I 2(8):1645–1648. https://doi.org/10.1039/P29960001645

    Article  Google Scholar 

  38. Dong J, Yang H, Li Y, Liu A, Wei W, Liu S (2020) Fluorescence sensor for organophosphorus pesticide detection based on the alkaline phosphatase-triggered reaction. Anal Chim Acta 1131:102–108. https://doi.org/10.1016/j.aca.2020.07.048

    Article  CAS  PubMed  Google Scholar 

  39. Wang L, Cui M, Tang H, Cao D (2018) Fluorescent nanoaggregates of quinoxaline derivatives for highly efficient and selective sensing of trace picric acid. Dyes Pigm 155:107–113. https://doi.org/10.1016/j.dyepig.2018.03.036

    Article  CAS  Google Scholar 

  40. Yang W, Yang Y, Zhan L, Zheng K, Chen Z, Zeng X, Yang C (2020) Polymorphism-dependent thermally activated delayed fluorescence materials with diverse three dimensional supramolecular frameworks. Chem Eng J 390:124626. https://doi.org/10.1016/j.cej.2020.124626

    Article  CAS  Google Scholar 

  41. Jonsson T, Irgum K (2000) New nucleophilic catalysts for bright and fast peroxyoxalate Chemiluminescence. Anal Chem 72(7):1373–1380. https://doi.org/10.1021/ac991339a

    Article  CAS  PubMed  Google Scholar 

  42. Emteborg M, Pontén E, Irgum K (1997) Influence of imidazole and bis (trichlorophenyl) oxalate in the oxalyldiimidazole peroxyoxalate chemiluminescence reaction. Anal Chem 558:69(11):2109–2114. https://doi.org/10.1021/ac961225o

  43. Jonsson T, Emteborg M, Irgum K (1998) Heterocyclic compounds as catalysts in the peroxyoxalate chemiluminescence reaction of bis (2, 4, 6-trichlorophenyl) oxalate. Anal chim acta 361(3):205–215. https://doi.org/10.1016/S0003-2670(98)00029-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the research council of Mazandaran University of Medical Sciences, Iran (No. 1161), this work dedicated to a part of Zahra Hashemi's post-doctoral project.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Zahra Hashemi was the first researcher, summarized the synthesis and characterization of 2-CPQ. Mohammad Ali Ebrahimzadeh was the principal investigator and designed the study. Pourya Biparva was the principal investigator and designed the analysis. Data analysis was performed by Seyed Mohammad Abedirad.

Corresponding authors

Correspondence to Mohammad Ali Ebrahimzadeh or Pourya Biparva.

Ethics declarations

Conflicts of Interest

Not applicable.

Data Availability

The authors confirm that the findings and results of this study are available.

Code Availability

Not applicable.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, Z., Ebrahimzadeh, M.A., Biparva, P. et al. Pyridine-2-yl Quinoxaline (2-CPQ) Derivative As a Novel Pink Fluorophore: Synthesis, and Chemiluminescence Characteristics. J Fluoresc 32, 723–736 (2022). https://doi.org/10.1007/s10895-022-02890-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02890-w

Keywords

Navigation