Skip to main content
Log in

Red Fluorescence of Eu3+-Doped ZnAl-LDH Response to Intercalation and Release of Ibuprofen

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A drug delivery system with identification function is attractive and important. For this reason, the red fluorescence of Eu3+-doped ZnAl-LDH response to intercalation and release of ibuprofen (IBU) has been studied. X-ray diffraction(XRD) results showed that the basal spacing of the Eu3+-doped ZnAl-LDH varied from 8.85 to 12.04 Å after the intercalation of IBU. The release of the IBU from the Eu3+-doped ZnAl-LDH was carried out in simulated intestinal medium (phosphate buffer solutions with pH 7.4 and 37 °C), and the releasing behavior of IBU exhibited an initial rapid release followed by a slow release. Moreover, the present delivery system has slower release of drug than those of other LDH-based delivery systems. Interestingly, the intercalation of IBU into the Eu3+-doped ZnAl-LDH obviously reduced the red fluorescence of the Eu3+-doped ZnAl-LDH, whereas the red fluorescence was recovered after the release of IBU. This fluorescent responsiveness may be a favorable signal for detecting the delivery and release of IBU. Therefore, the Eu3+-doped ZnAl-LDH with red fluorescence would be potential application as drug delivery system with identification function because of its cheapness, non-toxicity, good biocompatibility, and little damage to biological tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

Code availability

Not applicable.

References

  1. Bhaskaran M, Devegowda VG, Gupta VK, Shivachar A, Bhosale RR, Arunachalam M, Vaishnavi T (2020) Current perspectives on therapies, including drug delivery systems, for managing glioblastoma multiforme. ACS Chem Neurosci 11(19): 2962−2977. https://doi.org/10.1021/acschemneuro.0c00555

  2. Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O (2021) Nanoparticle-based drug delivery system: the magic bullet for the treatment of chronic pulmonary diseases. Mol Pharmaceutics 18(10):3671–3718. https://doi.org/10.1021/acs.molpharmaceut.1c00491

    Article  CAS  Google Scholar 

  3. Sharififi F, Sooriyarachchi AC, Altural H, Montazami R, Rylander MN, Hashemi N (2016) Fiber based approaches as medicine delivery systems.ACS Biomater Sci Eng 2(9): 1411− 1431. https://doi.org/10.1021/acsbiomaterials.6b00281

  4. Scicluna MC, Vella-Zarb L(2020) Evolution of nanocarrier drug-delivery systems and recent advancements in covalent organic framework−drug systems. ACS Appl Nano Mater 3(4): 3097−3115. https://doi.org/10.1021/acsanm.9b02603

  5. Kibria G, Ramos EK, Wan Y, Gius DR, Liu HP(2018) Exosomes as a drug delivery system in cancer therapy: potential and challenges. Mol Pharmaceutics 15(9): 3625−3633. https://doi.org/10.1021/acs.molpharmaceut.8b00277

  6. Djebbi MA, Elabed A, Bouaziz Z, Sadiki M, Elabed S, Namour P, Jaffrezic-Renault N, Amara AB (2016) Delivery system for berberine chloride based on the nanocarrier ZnAl-layered double hydroxide: Physicochemical characterization, release behavior and evaluation of antibacterial potential. Int J Pharm 515(1–2):422–430. https://doi.org/10.1016/j.ijpharm.2016.10.034

    Article  CAS  PubMed  Google Scholar 

  7. Li MX, Sultanbaw Y, Xu ZP, Gu WY, Chen WY, Liu JY, Qian GR (2019) High and long-term antibacterial activity against Escherichia colivia synergy between the antibiotic penicillin G and its carrier ZnAl layered double hydroxide. Collod & Surf B: Biointerf 174(1):435–442. https://doi.org/10.1016/j.colsurfb.2018.11.035

    Article  CAS  Google Scholar 

  8. Rebitski EP, Souza GP, Santana SA, Pergher SB, Alcântara AC (2019) Bionanocomposites based on cationic and anionic layered clays as controlled release devices of amoxicillin. Appl Clay Sci 173(1):35–45. https://doi.org/10.1016/j.clay.2019.02.024

    Article  CAS  Google Scholar 

  9. Leão AD, Alvarez-Lorenzo C, Soares-Sobrinho JL (2020) One-pot synthesis of the organomodified layered double hydroxides-glibenclamide biocompatible nanoparticles. Collo & Surf B: Biointerf 193:111055. https://doi.org/10.1016/j.colsurfb.2020.111055

    Article  CAS  Google Scholar 

  10. Gu Y, Xu C, Wang YY, Zhou XY, Fang L, Cao F (2019) Multifunctional nanocomposites based on liposomes and layered double hydroxides conjugated with glycylsarcosine for efficient topical drug delivery to the posterior segment of the eye. Mole Pharm. 16(7): 2845–2857. https://doi.org/10.1021/acs.molpharmaceut.8b01136

  11. Choy JH, Jung JS, Oh JM, Park M, Jeong J, Kang YK, Ha OJ (2004) Layered double hydroxide as an effificient drug reservoir for folate derivatives. Biomater 25(15):3059–3064. https://doi.org/10.1016/j.biomaterials.2003.09.083

    Article  CAS  Google Scholar 

  12. Rives V, Arco M, Martín C (2014) Intercalation of drugs in layered double hydroxides and their controlled release: A review. Appl Clay Sci 88/89:239–269. https://doi.org/10.1016/j.clay.2013.12.002

  13. Saha S, Ray S, Acharya R, Chatterjee TK, Chakraborty J (2017) Magnesium, zinc and calcium aluminiumlayered double hydroxide-drug nanohybrids: A comprehensive study. Appl Clay Sci 135:493–509.https://doi.org/10.1016/j.clay.2016.09.030

  14. Pillai SK, Kleyi P, Beer M, Mudaly P (2020) Layered double hydroxides: An advanced encapsulation and delivery system for cosmetic ingredients-an overview. Appl Clay Sci 199:105868. https://doi.org/10.1016/j.clay.2020.105868

    Article  CAS  Google Scholar 

  15. Timóteo TR, Melo CG, Danda LJ, Silva LC, Fontes DA, Silva PC, Aguilera CS, Siqueira LP, Roli LA, Neto PJ (2019) Layered double hydroxides of CaAl: A promising drug delivery system for increased dissolution rate and thermal stability of praziquantel. Appl Clay Sci 180:105197–105203. https://doi.org/10.1016/j.clay.2019.105197

    Article  CAS  Google Scholar 

  16. Rahaman SH, Bhattacharjee A, Saha S, Chakraborty M, Chakraborty J (2019) shRNA intercalation in CaAl-LDH nanoparticle synthesized at two different pH conditions and its comparative evaluation. Appl Clay Sci 171:57–64. https://doi.org/10.1016/j.clay.2019.02.005

    Article  CAS  Google Scholar 

  17. Kamyar A, Khakbiz M, Zamanian A, Yasaei M, Yarmand B (2019) Synthesis of a novel dexa- methasone intercalated layered double hydroxide nanohybrids and their deposition on anodized titanium nanotubes for drug delivery purposes. J Solid State Chem 271:144–153. https://doi.org/10.1016/j.jssc.2018.12.043

    Article  CAS  Google Scholar 

  18. Yasaei M, Khakbiz M, Ghasemi E, Zamanian A (2019) Synthesis and characterization of ZnAl-NO3(-CO3) layered doublehydroxide: A novel structure for intercalation and release of simvastatin. Appl Surf Sci 467(468):782–791. https://doi.org/10.1016/j.apsusc.2018.10.202

    Article  CAS  Google Scholar 

  19. Chakraborty M, Dasgupta S, Soundrapandian C, Chakraborty J, Ghosh S, Mitra MK, Basu D (2011) Methotrexate intercalated ZnAl-layered double hydroxide. J Solid State Chem 184(9):2439–2445. https://doi.org/10.1016/j.jssc.2011.07.015

    Article  CAS  Google Scholar 

  20. Choi G, Kim TH, Oh JM, Choy JH (2018) Emerging nanomaterials with advanced drug delivery functions, focused on methotrexate delivery. Coord Chem Rev 359:32–51.https://doi.org/10.1016/j.ccr.2018.01.007

  21. Jin L, Liu Q, Sun ZY, Ni XY, Wei M (2010) Preparation of 5-fluorouracil/- cyclodextrin complex intercalated in layered double hydroxide and the controlled drug release properties. Ind Eng Chem Res 49(22): 11176–11181.https://doi.org/10.1021/ie100990z

  22. Andrade KN, Knauth P, López Z, Hirata GA, Martinez SJG, Arízaga GGC (2020) Assembly of folate-carbon dots in GdDy-doped layered double hydroxides for targeted delivery of doxorubicin. Appl Clay Sci 192:105661. https://doi.org/10.1016/j.clay.2020.105661

    Article  CAS  Google Scholar 

  23. Liu JX, Zhao Q, Zhang XG (2017) Structure and slow release property of chlorpyrifos/ graphene oxide-ZnAl layered double hydroxide composite. Appl Clay Sci 145: 44–52. https://doi.org/10.1016/j.clay.2017.05.023

  24. Tang LP, Cheng HM, Cui SM, Wang XR, Song LY, Zhou W, Li SJ (2018) DL-mandelic acid intercalated Zn-Al layered double hydroxide: Anovel antimicrobial layered material. Collod & Surf B: Biointerf 165(1):111–117. https://doi.org/10.1016/j.colsurfb.2018.02.017

    Article  CAS  Google Scholar 

  25. Jensen ND, Bjerring M, Nielsen UG (2016) A solid state NMR study of layered double hydroxides intercalated with para-amino salicylate, a tuberculosis drug. Solid State Nucl Magnet Resonance 78:9–15

    Article  CAS  Google Scholar 

  26. Jung H, Kim H, Byeon SH (2018) Luminescent carrier, Tb3+-doped layered yttrium hydroxide, for delivery systems. ACS Appl Mater Interf 10(49): 43112–43121. https://doi.org/10.1021/acsami.8b18114

  27. Li C, Yin SY, Zhou HB, Zhang YJ, Li YX, Chen YF (2021) Near-infrared emission carrier, Er3+-doped ZnAl-LDH, for delivery and release of ibuprofen in vitro. J Sol-Gel Sci & Technol 99:430–443. https://doi.org/10.1007/s10971-021-05575-1

    Article  CAS  Google Scholar 

  28. Chen YF, Zhou SH, Li F, Chen YW (2010) Synthesis and photoluminescence of Eu-doped Zn/Al layered double hydroxides. J Mater Sci 45:6417–6423

    Article  CAS  Google Scholar 

  29. Vial S, Prevot V, Leroux F, Forano C (2008) Immobilization of urease in ZnAl Layered Double Hydroxides by soft chemistry routes. Micropor Mesopor Mater 107(1/2):190–201. https://doi.org/10.1016/j.micromeso.2007.02.033

    Article  CAS  Google Scholar 

  30. Djaballah R, Bentouami A, Benhamou A, Boury B, Elandaloussi EH (2018) The use of Zn-Ti layered double hydroxide interlayer spacing property for low-loading drug and low-dose therapy. Synthesis, characterization and release kinetics study. J Alloys & Compds 739:559–567

    Article  CAS  Google Scholar 

  31. Silva IGN, Morais AF, Lima BC, Garcia FA, Mustafa D (2020) Investigation of the structure-luminescence relationship in ZnAlEu layered double hydroxides intercalated with nitrate and benzenecarboxylates. Appl Clay Sci 199:105861. https://doi.org/10.1016/j.clay.2020.105861

    Article  CAS  Google Scholar 

  32. Ay AN, Zümreoglu-Karan B, Temel A, Rives V (2009) Bioinorganic magnetic core-shell nano- composites carrying antiarthritic agents: intercalation of ibuprofen and glucuronic acid into Mg-Al-layered double hydroxides supported on magnesium ferrite. Inorg Chem 48(18):8871–8877. https://doi.org/10.1021/ic901097a

    Article  CAS  PubMed  Google Scholar 

  33. Rojas R, Linck YG, Cuffini SL, Monti GA, Giacomelli CE (2015) Structural and physico-chemical aspects of drug release from layered double hydroxides and layered hydroxide salts. Appl Clay Sci 109(110):119–126. https://doi.org/10.1016/j.clay.2015.02.030

    Article  CAS  Google Scholar 

  34. Rojas R, Palena MC, Jimenez-Kairuz AF, Manzo RH, Giacomelli CE (2012) Modeling drug release from a layered double hydroxide-ibuprofen complex. Appl Clay Sci 62(63):15–20. https://doi.org/10.1016/j.clay.2012.04.004

    Article  CAS  Google Scholar 

  35. Lu X, Meng L, Li H, Du N, Zhang R, Hou W (2013) Facile fabrication of ibupro-fene LDH nanohybrids via a delamination/reassembling process. Mater Res Bull 48(4):1512–1517. https://doi.org/10.1016/j.materresbull.2012.12.057

    Article  CAS  Google Scholar 

  36. Sogias IA, Williams AC, Khutoryanskiy VV (2012) Chitosan-based mucoadhesive tabletsfor oral delivery of ibuprofen. Int J Pharm 436(1/2):602–610. https://doi.org/10.1016/j.ijpharm.2012.07.007

    Article  CAS  PubMed  Google Scholar 

  37. Hussain A, Smith G, Khan KA, Bukhari NI, Pedge NI, Ermolina I (2018) Solubility and dissolution rate enhancement of ibuprofen by co-milling with polymeric excipients. Eur J Pharm Sci 123:395–403. https://doi.org/10.1016/j.ejps.2018.08.001

    Article  CAS  PubMed  Google Scholar 

  38. Liu CX, Hou WG, Li LF, Li Y, Liu SJ (2008) Synthesis and characterization of 5-fluorocyto sine intercalated Zn–Al layered double hydroxide. J Solid State Chem 181(8):1792–1797. https://doi.org/10.1016/j.jssc.2008.03.032

    Article  CAS  Google Scholar 

  39. Schrank S, Kann B, Saurugger E, Ehmann H, Werzer O, Windbergs M, Glasser BJ, Zimmer A, Khinast J, Roblegg E (2014) Impact of drying on solid state modififications and drug distribution in ibuprofen-loaded calcium stearate pellets. Mol Pharmaceutics 11(2):599–609. https://doi.org/10.1021/mp4005782

    Article  CAS  Google Scholar 

  40. Amirinejad M, Davoodi J, Abbaspour MR, Akhgari A, Hadizadeh F, Badiee A (2020) Preparation, characterization and improved release profile of ibuprofen-phospholipid association. J Drug Delivery Science and Technology 60:101951. https://doi.org/10.1016/j.jddst.2020.101951

    Article  CAS  Google Scholar 

  41. Ambrogi V, Fardella G, Grandolini G, Perioli L (2001) Intercalation compounds of hydro- talcite-like anionic clays with antiinflammatory agents intercalation and in vitro release of ibuprofen. Int J Pharm 220(1/2): 23–32.https://doi.org/10.1016/S0378-5173(01)00629-9

  42. Barnabas MJ, Parambadath S, Ha CS (2017) Amino modified core–shell mesoporous silica based layered double hydroxide (MS-LDH) for drug delivery. J Ind Eng Chem 53:392–403. https://doi.org/10.1016/j.jiec.2017.05.011

    Article  CAS  Google Scholar 

  43. Yonezaki Y (2020) Emission-color change in Eu-doped high-symmetry glaserite-type silicates. J Photochem Photobio A: Chem 398:112645. https://doi.org/10.1016/j.jphotochem.2020.112645

    Article  CAS  Google Scholar 

  44. Shu Y, Dai T, Ye QY, Jin DQ, Xu Q, Hu XY (2021) A dual-emitting two-dimensional nickel-based metal-organic framework nanosheets: Eu3+/Ag+ functionalization synthesis and ratiometric sensing in aqueous solution. J Fluoresc 31: 1947–1957. https://doi.org/10.1007/s10895-021-02826-w

  45. Ilmi R, Zhang DY, Dutra JDL, Dege N, Zhou L, Wong WY, Raithby PR, Khan SM (2021) A tris β-diketonate europium(III) complex based OLED fabricated by thermal evaporation method displaying efficient bright red emission. Org Electron 96:106216. https://doi.org/10.1016/j.orgel.2021.106216

    Article  CAS  Google Scholar 

  46. Chen YF, Zhou SH, Li F, Li F, Chen YW (2011) Photoluminescence of Eu-doped ZnAl-LDH depending on phase transitions caused by annealing temperatures. J Lumin 131:701–704. https://doi.org/10.1016/j.jlumin.2010.11.021

    Article  CAS  Google Scholar 

  47. Chen YF, Zhang KL, Wang XQ, Zheng FL (2018) Study on a Novel Binary Zn n Eu Layered Double Hydroxide with Excellent Fluorescence. J Fluoresc 28:259–268. https://doi.org/10.1007/s10895-017-2188-x

  48. Sengar M, Narula AK (2019) Luminescence sensitization of Eu(III) complexes with aromatic schiff base and N, N’-donor heterocyclic ligands: synthesis, luminescent properties and energy transfer. J Fluoresc 29:111–120. https://doi.org/10.1007/s10895-018-2315-3

    Article  CAS  PubMed  Google Scholar 

  49. Pilch M, Ortyl J, Chachaj-Brekiesz A, Galek M, Popielarz R (2020) Europium-based luminescent sensors for mapping pressure distribution on surfaces. Sens Actua B: Chem 305:127409. https://doi.org/10.1016/j.snb.2019.127409

    Article  CAS  Google Scholar 

  50. Shahedi A, Bolorizadeh MA, Karimi-Maleh H (2021) A europium (III) complex tested for deoxyribonucleic acid-binding, bovine serum albumin binding, and antibacterial activity. J Molecular Liquids 335: 116323.https://doi.org/10.1016/j.molliq.2021.116323.

  51. Chen YF, Zhou SH, Li F, Wei JC, Dai YF, Chen YW (2011) Fluorescence of Mg-Al-Eu ternary layered double hydroxide sensitivity to phenylalanine. J Fluoresc 21:1677–1682. https://doi.org/10.1007/s10895-011-0857-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (51864033, 21978127), the National Key Research Development Program of China (2019YFC0605000). National Natural Science Foundation of China, 51864033, Yongxiu Li, 21978127, Yongxiu Li, National Key research development program of China, 2019YFC0605000, Yongxiu Li.

Author information

Authors and Affiliations

Authors

Contributions

YF guided the whole experiment and wrote the manuscript; XX and C did the experiments and analyzed data; YJ made characterizations; YX offered some instructive advices. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yufeng Chen.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All the authors are consent to publishing the paper.

Conflict of Interest

There is no conflict to declare in our manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Qiu, X., Li, C. et al. Red Fluorescence of Eu3+-Doped ZnAl-LDH Response to Intercalation and Release of Ibuprofen. J Fluoresc 32, 533–547 (2022). https://doi.org/10.1007/s10895-021-02883-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02883-1

Keywords

Navigation