Skip to main content
Log in

A Facile Probe for Fluorescence Turn-on and Simultaneous Naked-Eyes Discrimination of H2S and biothiols (Cys and GSH) and Its Application

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Hydrogen sulfide and biothiol molecules such as Cys and GSH acted important roles in many physiological processes. To simultaneously detect and distinguish them was quite necessary by a suitable fluorescent probe. A novel chemosensor 4-(4-(benzo[d]thiazol-2-yl)-2-methoxyphenoxy)-7-nitrobenzo[c][1,2,5]oxadiazole (BMNO) was designed to detect H2S/Cys/GSH using the combination of nitrobenzofurazan (NBD) and benzothiazole fluorophores linked by a facile ether bond. The probe BMNO was developed for simultaneous identification of H2S, Cys and GSH. Noticeably, the color changes (from colorless to light purple, light orange and light yellow) of probe BMNO solutions for sensing H2S, Cys and GSH could be observed by naked eyes, respectively. The probe BMNO exhibited high selectivity and sensitivity for H2S, Cys and GSH showing distinct optical signal with detection limit as low as 0.15 μM, 0.03 μM and 0.14 μM, respectively. The sensing mechanism was clarified by spectrum analysis and some controlled experiments. In addition, these outstanding properties of probe BMNO enabled its practical applications in detection H2S in beer, and in cell imaging for Cys and GSH as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Wang JP, Wen Y, Huo FJ, Yin CK (2019) A highly sensitive fluorescent probe for hydrogen sulfide based on dicyanoisophorone and its imaging in living cells. Sens Actuator B Chem 294:141–147. https://doi.org/10.1016/j.snb.2019.05.038

    Article  CAS  Google Scholar 

  2. Wang RY, Li ZF, Zhang CY, Li YY, Xu G, Zhang QZ, Li LY (2019) Fast-resopnse turn-on fluorescent probes based on thiolysis of NBD amine for H2S bioimaging. ChemBioChem 17:962–968. https://doi.org/10.1002/cbic.201600060

  3. Fan JM, Qi L, Li YP, Tang QP, Ding LP, Fang Y (2019) A single probe-based sensor array for fingerprinting biothiols in serum and urine via surfactant modulation strategy. Sen Actuator B Chem 301:127144. https://doi.org/10.1016/j.snb.2019.127144

    Article  CAS  Google Scholar 

  4. Ren XJ, Tian HH, Yang L, He L, Geng YN, Liu XJ, Song XZ (2018) Fluorescent probe for simultaneous discrimination of Cys/Hcy and GSH in pure aqueous media with a fast response under a single-wavelength excitation. Sens Actuator B Chem 273:1170–1178. https://doi.org/10.1016/j.snb.2018.04.163

    Article  CAS  Google Scholar 

  5. Feng SM, Fang Y, Feng WY, Xia QF, Feng GQ (2017) A colorimetric and ratiometric fluorescent probe with enhanced near-infrared fluorescence for selective detection of cysteine and its application in living cells. Dyes Pigment 146:103–111. https://doi.org/10.1016/j.dyepig.2017.07.002

    Article  CAS  Google Scholar 

  6. Eto K, Asada T, Arima K, Makifuchi T, Kimura H (2002) Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem Biophys Res Commun 293:1485–1488. https://doi.org/10.1016/S0006-291X(02)00422-9

    Article  CAS  PubMed  Google Scholar 

  7. Wu LY, Yang W, Jia XM, Duridanova D, Cao K, Wang R (2009) Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats. Lab Invest 89:59–67. https://doi.org/10.1038/labinvest.2008.109

    Article  CAS  PubMed  Google Scholar 

  8. Cao QH, Zhang L, Yang GD, Xu CQ, Wang R (2010) Butyrate-stimulated H2S production in colon cancer cells, Antioxid. Redox Signal 12:1101–1109. https://doi.org/10.1089/ars.2009.2915

    Article  CAS  Google Scholar 

  9. Yang W, Yang GD, Jia XM, Wu LY, Wang R (2005) Activation of K-ATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J Physiol London 569:519–531. https://doi.org/10.1113/jphysiol.2005.097642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fiorucci S, Antonelli E, Mencarelli A, Orlandi S, Renga B, Rizzo G, Distutti E, Shah V, Morelli A (2005) The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology 42:539–548. https://doi.org/10.1002/hep.20817

    Article  CAS  PubMed  Google Scholar 

  11. Hammers MD, Taormina MJ, Cerda MM, Montoya LA, Seidenkranz DT, Parthasarathy R, Pluth MD (2015) A bright fluorescent probe for H2S enables analyte-responsive, 3D imaging in live zebrafish using light sheet fluorescence microscopy. J Amer Chem Soc 137:10216–10223. https://doi.org/10.1021/jacs.5b04196

    Article  CAS  Google Scholar 

  12. Lieberman MW, Wiseman AL, Shi ZZ, Carter BZ, Barrios R, Ou CN, Chévez-Barrios P, Wang Y, Habib GM, Goodman JC, Huang SL, Lebovitz RM, Matzuk MM (1996) Growth retardation andcysteine deficiency in gamma-glutamyl transpeptidase-deficient mice. Proc Nat Acad Sci USA 93:7923–7926. https://doi.org/10.1073/pnas.93.15.7923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shahrokhian S (2001) Lead phthalocyanine as a selective carrier for preparation of acysteine-selective electrode. Anal Chem 73:5972–5978. https://doi.org/10.1021/ac010541m

    Article  CAS  PubMed  Google Scholar 

  14. Elshorbagy AK, Kozich V, Smith AD, Refsum H (2012) Cysteine and obesity: consistency of the evidence across epidemiologic, animal and cellular studies. Curr Opin Clin Nutr Metab Care 15:49–57. https://doi.org/10.1097/MCO.0b013e32834d199f

    Article  CAS  PubMed  Google Scholar 

  15. Kang YF, Qiao HX, Meng YL, Xin ZH, Ge LP, Dai MY, Xu JJ, Zhang CH (2017) Selective detection of cysteine over homocysteine and glutathione by a simple and effective probe. Anal Methods 9:1707–1709. https://doi.org/10.1039/c7ay00219j

    Article  CAS  Google Scholar 

  16. Lee MH, Yang Z, Lim CW, Lee YH, Sun DB, Kang C, Kim JS (2013) Disulfide-cleavage-triggered chemosensors and their biological applications. Chem Rev 113:5071–5109. https://doi.org/10.1021/cr300358b

    Article  CAS  PubMed  Google Scholar 

  17. Wang FY, Zhou L, Zhao CC, Wang R, Fei Q, Luo SH, Guo ZQ, Tian H, Zhu WH (2015) A dual-response BODIPY-based fluorescent probe for the discrimination of glutathione from cystein and homocysteine. Chem Sci 6:2584–2589. https://doi.org/10.1039/c5sc00216h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–17208

    Article  CAS  Google Scholar 

  19. Akerboom TP, Bilzer M, Sies H (1982) The relationship of biliary glutathione disulfide efflux and intracellular glutathione disulfide content in perfused rat liver. J Biol Chem 257:4248–4252

    Article  CAS  Google Scholar 

  20. Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155. https://doi.org/10.1016/S0753-3322(03)00043-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Herzenberg LA, Rosa SCD, Dubs JG, Roederer M, Anderson MT, Ela SW, Deresinski SC (1997) Glutathione deficiency is associated with impaired survival in HIV disease. Proc Natl Acad Sci USA 94:1967–1972. https://doi.org/10.1073/pnas.94.5.1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Niu LY, Chen YZ, Zheng HR, Wu LZ, Tung CH, Yang QZ (2015) Design strategies of fluorescent probes for selective detection among biothiols. Chem Soc Rev 44:6143–6160. https://doi.org/10.1039/c5cs00152h

    Article  CAS  PubMed  Google Scholar 

  23. Vacek J, Klejdus B, Petrlová J, Lojková L, Kubáň V (2006) A hydrophilic interaction chromatography coupled to a mass spectrometry for the determination of glutathione in plant somatic embryos. Analyst 131:1167–1174. https://doi.org/10.1039/B606432A

    Article  CAS  PubMed  Google Scholar 

  24. Inoue T, Kirchhoff JR (2002) Determination of thiols by capillary electrophoresis with amperometric detection at a coenzyme pyrroloquinoline quinone modified electrode. Anal Chem 74:1349–1354. https://doi.org/10.1021/ac0108515

    Article  CAS  PubMed  Google Scholar 

  25. Ivanov AR, Nazimov IV, Baratova LA (2000) Qualitative and quantitative determination of biologically active low-molecular-mass thiols in human blood by reversed-phase high-performance liquid chromatography with photometry and fluorescence detection. J Chromatogr A 870:443–442. https://doi.org/10.1016/S0021-9673(00)00720-2

    Article  Google Scholar 

  26. Burford N, Eelman MD, Mahony DE, Morash M (2003) Definitive identification of cysteine and glutathione complexes of bismuth by mass spectrometry: assessing the biochemical fate of bismuth pharmaceutical agents. Chem Commun 1:146–147. https://doi.org/10.1039/b210570e

    Article  CAS  Google Scholar 

  27. Lee JS, Ulmann PA, Han MS, Mirkin CA (2008) A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett 8:529–533. https://doi.org/10.1021/nl0727563

    Article  CAS  PubMed  Google Scholar 

  28. Fei SD, Chen JH, Yao SZ, Deng GH, He DL, Kuang YF (2005) Electrochemical behavior of l-cysteine and its detection at carbon nanotube electrode modified with platinum. Anal Biochem 339:29–35. https://doi.org/10.1016/j.ab.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  29. Radford-Knoery J, Cutter GA (1993) Determination of carbonyl sulfide and hydrogen sulfide species in natural waters using specialized collection procedures and gas chromatography with flame photometric detection. Anal Chim 65:976–982. https://doi.org/10.1021/ac00056a005

    Article  CAS  Google Scholar 

  30. Xu KH, Zhang Y, Tang B, Laskin J, Roach PJ, Chen H (2010) Study of highly selective and efficient thiol derivatization using selenium reagents by mass spectrometry. Anal Chem 82:6926–6932. https://doi.org/10.1021/ac1011602

    Article  CAS  PubMed  Google Scholar 

  31. Yin GX, Niu TT, Gan YB, Yu T, Yin P, Chen HM, Zhang YY, Li HT, Yao SZ (2018) A Multi-signal Fluorescent Probe with Multiple Binding Sites for Simultaneous Sensing of Cysteine, Homocysteine, and Glutathione. Angew Chem Int Ed 57:4991–4994. https://doi.org/10.1002/anie.201800485

    Article  CAS  Google Scholar 

  32. Zhao XX, He FR, Dai YP, Ma FL, Qi ZJ (2020) A single fluorescent probe for one-and two-photon imaging hydrogen sulfide and hydrogen polysulfides with different fluorescence signals. Dyes Pigment 172:107818. https://doi.org/10.1016/j.dyepig.2019.107818

    Article  CAS  Google Scholar 

  33. Karakuş E, Ucuncu M, Emrullahoğlu M (2015) An electrophilic cyanate as a recognition motif for reactive sulphur species: selective fluorescence detection of H2S. Anal Chem 88:1039–1043. https://doi.org/10.1021/acs.analchem.5b04163

    Article  CAS  PubMed  Google Scholar 

  34. Wu ZS, Li Z, Yang L, Han JH, Han SF (2012) Fluorogenic detection of hydrogen sulfide via reductive unmasking of o-azidomethylbenzoyl-coumarin conjugate. Chem Commun 48:10120–10122. https://doi.org/10.1039/c2cc34682f

  35. Karakuş E, Sayar M, Dartar S, Kaya BU, Emrullahoğlu M (2019) Fluorescein propiolate:Apropiolate-decorated fluorescent probewithremarkableselectivity towardscysteine. Chem Commun 55:4937–4940. https://doi.org/10.1039/C9CC01774G

    Article  Google Scholar 

  36. Wang X, Sun J, Zhang WH, Ma XX, Lv JZ, Tang B (2013) A near-infrared ratiometric fluorescent probe for rapid and highly sensitive imaging of endogenous hydrogen sulfide in living cells Chem Sci 4:2551–2556. https://doi.org/10.1039/c3sc50369k

    Article  CAS  Google Scholar 

  37. Yang XF, Guo YX, Strongin RM (2011) Conjugate Addition/Cyclization Sequence Enables Selective and Simultaneous Fluorescence Detection of Cysteine and Homocysteine Angew. Chem 50:10690–10693. https://doi.org/10.1002/ange.201103759

    Article  CAS  Google Scholar 

  38. Maeda H, Matsuno H, Ushida M, Katayama K, Saeki K, Itoh N (2005) 2,4-Dinitrobenzenesulfonyl Fluoresceins as Fluorescent Alternatives to Ellman’s Reagent in Thiol-Quantification Enzyme Assays. Angew Chem 44:2922–2925. https://doi.org/10.1002/ange.200500114

    Article  CAS  Google Scholar 

  39. Wang FY, Feng CC, Lu LL, Xu ZA, Wen Z (2017) A ratiometric fluorescent probe for rapid and sensitive detection of biothiols in fetal bovine serum. Talanta 169:149–155. https://doi.org/10.1016/j.talanta.2017.03.080

    Article  CAS  PubMed  Google Scholar 

  40. Wang Q, Ma FT, Tang WQ, Zhao SL, Li CJ, Xie YS (2018) A novel nitroethylene-based porphyrin as a NIR fluorescence turn-on probe for biothiols based on the Michael addition reaction. Dyes Pigment 148:437–443. https://doi.org/10.1016/j.dyepig.2017.09.046

    Article  CAS  Google Scholar 

  41. Li XQ, Huo FJ, Yue YK, Zhang YB, Yin CX (2017) A coumarin-based “off-on” sensor for fluorescence selectivily discriminating GSH from Cys/Hcy and its bioimaging in living cells. Sens Actuator B Chem 253:42–49. https://doi.org/10.1016/j.snb.2017.06.120

    Article  CAS  Google Scholar 

  42. Li YF, Li CY, Xu F, Zhou Y, Xiao QC (2011) A fluorescent chemosensor for cysteine based on naphthalimide derivative in aqueous solution Sens Actuator B Chem 155:253–257. https://doi.org/10.1016/j.snb.2010.12.011

    Article  CAS  Google Scholar 

  43. Das P, Mandal AK, Chandar NB, Baidya M, Bhatt HB, Ganguly B, Ghosh SK, Das A (2012) New Chemodosimetric Reagents as Ratiometric Probes for Cysteine and Homocysteine and Possible Detection in Living Cells and in Blood Plasma. Chem Eur J 18:15382–15393. https://doi.org/10.1002/chem.201201621

    Article  CAS  PubMed  Google Scholar 

  44. Lee HY, Choi YP, Kim S, Yoon T, Guo Z, Lee S, Swamy KMK, Kim G, Lee JY, Shin I, Yoon J (2014) Selective homocysteine turn-on fluorescent probes and their bioimaging applications Chem. Commun 50:6967–6969. https://doi.org/10.1039/c4cc00243a

    Article  CAS  Google Scholar 

  45. Ren XT, Wang F, Lv J, Wei TW, Zhang W, Wang Y, Chen XQ (2016) An ESIPT-based fluorescent probe for highly selective detection of glutathione in aqueous solution and living cells. Dyes Pigment 129:156–162. https://doi.org/10.1016/j.dyepig.2016.02.027

    Article  CAS  Google Scholar 

  46. Niu HW, Ni BW, Chen KK, Yang XP, Cao WB, Ye Y, Zhao YF (2019) A long-wavelength-emitting fluorescent probe for simultaneous discrimination of H2S/Cys/GSH and its bio-imaging applications. Talanta 196:145–152. https://doi.org/10.1016/j.talanta.2018.12.031

    Article  CAS  PubMed  Google Scholar 

  47. Yang L, Su YN, Geng YN, Zhang Y, Ren XJ, He L, Song XZ (2018) A triple-emission fluorescent probe for discriminatory detection of cysteine/homocysteine, glutathione/hydrogen sulfide and thiophenol in living cells. ACS Sens 3:1863–1869. https://doi.org/10.1021/acssensors.8b00685

    Article  CAS  PubMed  Google Scholar 

  48. Qi FP, Zhang Y, Wang BH, Chen WQ, Yang L, Yang ZG, Song XZ (2019) A fluorescent probe for the dicriminatory detecion of Cys/Hcy, GSH and H2S in living cells and zebrafish. Sens Actuator B Chem 296:126533. https://doi.org/10.1016/j.snb.2019.05.010

    Article  CAS  Google Scholar 

  49. Zhang H, Xu LZ, Chen WQ, Huang J, Huang CS, Sheng JR, Song XZ (2018) A lysosome-targetable fluorescent probe for simultaneously sensing Cys/Hcy, GSH, and H2S from different signal patterns. ACS Sens 3:2513–2517. https://doi.org/10.1021/acssensors.8b01101

    Article  CAS  PubMed  Google Scholar 

  50. Zhang YB, Wang JF, Yue YK, Chao JB, Huo FJ, Yin CX (2020) A new strategy for the fluorescence discrimination of Cys/Hcy and simultaneously colorimetric detection for H2S. Spectrochim Acta A 227:117537. https://doi.org/10.1016/j.saa.2019.117537

    Article  CAS  Google Scholar 

  51. Chen FZ, Han DM, Gao Y, liu H, Wang SF, Zhou FY, Li KB, Zhang SQ, Shao WJ, He YL (2018) A turn-on fluorescent probe for simultaneous sensing of cysteine/homocysteine and hydrogen sulfide and its bioimaging applications. Talanta 187:19–26. https://doi.org/10.1016/j.talanta.2018.05.010

    Article  CAS  PubMed  Google Scholar 

  52. Wang JP, Wen Y, Huo FJ, Yin CX (2019) Based ‘successive’ nucleophilic substitution mitochondrial-targeted H2S red light emissive fluorescent probe and its imaging in mice. Sens Actuator B Chem 297:126773. https://doi.org/10.1016/j.snb.2019.126773

    Article  CAS  Google Scholar 

  53. Sheng HC, Hu YH, Zhou Y, Fan SM, Cao Y, Zhao XX, Yang WG (2019) A highly selective ESIPT-based fluorescent probe with a large Stokes shift for the turn-on detection of cysteine and its application in living cells. Dyes Pigment 160:48–67. https://doi.org/10.1016/j.dyepig.2018.07.036

    Article  CAS  Google Scholar 

  54. Li SJ, Fu YJ, Li CY, Li YF, Yi LH, Ou-Yang J (2017) A near-infrared fluorescent probe based on BODIPY derivative with high quantum yield for selective detection of exogenous and endogenous cysteine in biological samples. Anal Chim Acta 994:73–81. https://doi.org/10.1016/j.aca.2017.09.031

    Article  CAS  PubMed  Google Scholar 

  55. Wu QQ, Mao M, Liang WL, Stadler FJ (2018) Quinoline-derived fluorescent probes for the discrimination of Cys from Hcys/GSH and bioimaging in living cells. Talanta 186:110–118. https://doi.org/10.1016/j.talanta.2018.04.044

    Article  CAS  PubMed  Google Scholar 

  56. Zhang H, Wang C, Wang G, Wang K, Jiang K (2016) Thrombin-mediated ratiometric two-photon fluorescent probe for selective imaging of endogenous ultratrace glutathione in platelet. Biosens Bioelectron 78:344–350. https://doi.org/10.1016/j.bios.2015.11.065

    Article  CAS  PubMed  Google Scholar 

  57. Dai X, Zhang T, Miao JY, Zhao BX (2016) A ratiometric fluorescent probe with DNBS group for biothiols in aqueous solution. Sens Actuators B: Chem 223:274–279. https://doi.org/10.1016/j.snb.2015.09.106

    Article  CAS  Google Scholar 

  58. Cao M, Chen H, Chen D, Xu Z, Liu SH, Chen X, Yin J (2016) Naphthalimide-based fluorescent probe for selectively and specifically detecting glutathione in the lysosomes of living cells. Chem Commun 52:721–724. https://doi.org/10.1039/C5CC08328A

    Article  CAS  Google Scholar 

  59. Shiu HY, Chong HC, Leung YC, Wong MK, Che CM (2010) A Highly Selective FRET-Based Fluorescent Probe for Detection of Cysteine and Homocysteine. Chem Eur J 16:3308–3313. https://doi.org/10.1002/chem.200903121

    Article  CAS  PubMed  Google Scholar 

  60. Wang HL, Zhou GD, Gai HW, Chen XQ (2012) A fluorescein-based probe with high selectivity to cysteine over homocysteine and glutathione. Chem Commun 48:8341–8343. https://doi.org/10.1039/c2cc33932c

    Article  CAS  Google Scholar 

  61. Wang Q, Wei XD, Li CJ, Xie YS (2018) A novel p-aminophenylthio- and cyano-substituted BODIPY as a fluorescence turn-on probe for distinguishing cysteine and homocysteine from glutathione. Dyes Pigment 148:212–218. https://doi.org/10.1016/j.dyepig.2017.09.020

    Article  CAS  Google Scholar 

  62. Wang WH, Rusin O, Xu XY, Kim KK, Escobedo JO, Fakayode SO, Fletcher KA, Lowry M, Schowalter CM, Lawrence CM, Fronczek FR, Warner IM, Strongin RM (2005) Detection of homocysteine and cysteine. J Am Chem Soc 127:15949–15958. https://doi.org/10.1021/ja054962n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu HL, Wang CP, Zhang JW, Zhang YH, Chen CY, Yang ZH, Fan XY (2015) 1, 8-Naphthalimide derivative-based turn-off fluorescent probe for the detection of picrate in organic aqueous media. Z Naturforsch B 70:863–869. https://doi.org/10.1515/znb-2015-0094

    Article  CAS  Google Scholar 

  64. Lohani CR, Kim JM, Chung SY, Yoon JY, Lee KH (2010) Colorimetric and fluorescent sensing of pyrophosphate in 100% aqueous solution by a system comprised of rhodamine B compound and Al3+ complex. Analyst 135:2079–2084. https://doi.org/10.1039/c0an00059k

    Article  CAS  PubMed  Google Scholar 

  65. Brouwer AM (2011) Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl Chem 83:2213–2228. https://doi.org/10.1351/PAC-REP-10-09-31

    Article  CAS  Google Scholar 

  66. Zeng S, Li SJ, Sun XJ, Li MQ, Xing ZY, Li JL (2019) A benzothiazole-based chemosensor for significant fluorescent turn-on and ratiometric detection of Al3+ and its application in cell imaging. Inorg Chim Acta 486:654–662. https://doi.org/10.1016/j.ica.2018.11.042

    Article  CAS  Google Scholar 

  67. Zeng S, Li SJ, Liu TT, Sun XJ, Xing ZY (2019) A significant fluorescent “turn-on” chemosensor for Al3+ detection and application in real sample, logic gate and bioimaging. Inorg Chim Acta 495:118962. https://doi.org/10.1016/j.ica.2019.118962

    Article  CAS  Google Scholar 

  68. Luo WF, Xue HY, Ma JJ, Wang L, Liu WS (2019) Molecular engineering of a colorimetric two-photon fluorescent probe for visualizing H2S level in lysosome and tumor. Anal Chim Acta 1077:273–280. https://doi.org/10.1016/j.aca.2019.05.057

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Students' Innovation and Entrepreneurship Training Program of Northeast Agricultural University (No. 202010224124).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

T.T.L writing-original draft and visualization; S.J.L methodology and formal analysis; X.J.S synthesis and data curation; J.W. and Y.X.D Validation; Z.Y.X conceptualization, methodology, and writing-review & editing; X.S.Z. and R.F.W. equipment’s and laboratory facilities.

Corresponding author

Correspondence to Zhi-Yong Xing.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.90 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, TT., Li, SJ., Zhang, XS. et al. A Facile Probe for Fluorescence Turn-on and Simultaneous Naked-Eyes Discrimination of H2S and biothiols (Cys and GSH) and Its Application. J Fluoresc 32, 175–188 (2022). https://doi.org/10.1007/s10895-021-02838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02838-6

Keywords

Navigation