Skip to main content

A Novel Benzimidazole-Based Chemosensor for Fluorometric Determination of Zinc Ions

Abstract

A simple and novel Schiff base chemosensor (BMHM) based on benzimidazole was synthesized. In ethanol–water (1:1, v/v) medium on varying concentrations of Zn2+ chemosensor exhibited a strong and quick turn on fluorescence response. The Zn2+ recognition was based on the Chelation–enhanced fluorescence effect. The binding constant and limit of detection for BMHM-Zn2+ complexation were estimated to be 7.99 × 104 M−1 and 0.148 µM, respectively. The extreme fluorescent enhancement caused by Zn2+ binding in chemosensor BMHM occurred at a pH range of 6–7. The practical use of chemosensor BMHM was tested by determination of Zn2+ in real water samples and comparing the results with the data obtained using high resolution inductively coupled plasma mass spectrometry.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. 1.

    Prodi L, Montalti M, Zaccheroni N, Dolci LS (2005) Probes and Sensors for cations. In: Geddes CD, Lakowicz JR (eds) Topics in fluorescence spectroscopy, Advanced concepts in fluorescence sensing: Part A: Small molecule sensing. Springer Science and Business Media Inc., Boston, pp 1–57

    Google Scholar 

  2. 2.

    Kwon N, Hu Y, Yoon J (2018) Fluorescent chemosensors for various analytes including reactive oxygen species, biothiol, metal ions, and toxic gases. ACS Omega 3:13731–13751. https://doi.org/10.1021/acsomega.8b01717

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Katarivas Levy G, Goldman J, Aghion E (2017) The prospects of zinc as a structural material for biodegradable implants-a review paper. Metals 7:402. https://doi.org/10.3390/met7100402

    CAS  Article  Google Scholar 

  4. 4.

    WHO (1996) Guidelines for drinking-water quality. Volume 2: Health Criteria and other supporting information. 2nd edition. Geneva

  5. 5.

    Jiao S, Kong L, Liu G, Jia X, Tian J, Liu Y, Zhang L, Zhang W, Li Y, Huang Z (2020) A simple and an easy-to-synthesize turn-on fluorescent probe for rapid detection of Zn2+ and its application in bioimaging. Tetrahedron Lett 61:152507. https://doi.org/10.1016/j.tetlet.2020.152507

    CAS  Article  Google Scholar 

  6. 6.

    İnal EK (2020) A fluorescent chemosensor based on Schiff base for the determination of Zn2+, Cd2+ and Hg2+. J Fluoresc 30:891–900. https://doi.org/10.1007/s10895-020-02563-6

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Gao LL, Li SP, Wang Y, Wu WN, Zhao XL, Li HJ, Xu ZH (2020) Quinoline-based hydrazone for colorimetric detection of Co2+ and fluorescence turn-on response of Zn2+. Spectrochim Acta A Mol Biomol Spectrosc 230:118025. https://doi.org/10.1016/j.saa.2020.118025

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Kim S, Lee H, So H, Lee H, Kim KT, Kim C (2020) A benzyl carbazate-based fluorescent chemosensor for detecting Zn2+: application to zebrafish. Spectrochim Acta A Mol Biomol Spectrosc 228:117787. https://doi.org/10.1016/j.saa.2019.117787

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Alici MK (2020) Phentroimidazole based fluorescence “turn on” sensor for highly sensitive detection of Zn2+ ions. J Fluoresc 30:269–273. https://doi.org/10.1007/s10895-020-02498-y

    CAS  Article  Google Scholar 

  10. 10.

    Zhao G, Guo B, Wei G, Guang S, Gu Z, Xu H (2019) A novel dual-channel Schiff base fluorescent chemo-sensor for Zn2+ and Ca2+ recognition: synthesis, mechanism and application. Dyes Pigm 170: 107614. https://doi.org/10.1016/j.dyepig.2019.107614

    CAS  Article  Google Scholar 

  11. 11.

    Ghorai P, Banerjee S, Nag D, Mukhopadhyay SK, Saha A (2019) Design and synthesis of a novel fluorescent-colorimetric chemosensor for selective detection of Zn(II) and Cu(II) ions with applications in live cell imaging and molecular logic gate. J Lumin 205:197–209. https://doi.org/10.1016/j.jlumin.2018.09.016

    CAS  Article  Google Scholar 

  12. 12.

    Das B, Jana A, Mahapatra AD, Chattopadhyay D, Dhara A, Mabhai S, Dey S (2019) Fluorescein derived Schiff base as fluorimetric zinc (II) sensor via turn on response and its application in live cell imaging. Spectrochim Acta A Mol Biomol Spectrosc 212:222–231. https://doi.org/10.1016/j.saa.2018.12.053

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Gao W, Zhang Y, Li H, Pu S (2018) A multi-controllable selective fluorescent turn-on chemosensor for Al3+ and Zn2+ based on a new diarylethene with a 3-(4-methylphenyl)-1H-pyrazol-5-amine Schiff base group. Tetrahedron 74:6299–6309. https://doi.org/10.1016/j.tet.2018.09.017

    CAS  Article  Google Scholar 

  14. 14.

    Ergun E, Ergun Ü, İleri Ö, Küçükmüzevir MF (2018) An investigation of some Schiff base derivatives as chemosensors for Zn(II): the performance characteristics and potential applications. Spectrochim Acta A Mol Biomol Spectrosc 203:273–286. https://doi.org/10.1016/j.saa.2018.05.116

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Fan L (2017) Synthesis of two coumarin-derived Schiff bases and investigation of theirs selectivity for Zn2+. J Fluoresc 27:1331–1337. https://doi.org/10.1007/s10895-017-2067-5

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Kumar M, Kumar A, Singh MK, Sahu SK, John RP (2017) A novel benzidine based Schiff base turn-on fluorescent chemosensor for selective recognition of Zn2+. Sens Actuators B Chem 241:1218–1223. https://doi.org/10.1016/j.snb.2016.10.008

    CAS  Article  Google Scholar 

  17. 17.

    Mukherjee S, Talukder S (2016) A reversible luminescent quinoline based chemosensor for recognition of Zn2+ ions in aqueous methanol medium and its logic gate behavior. J Lumin 177:40–47. https://doi.org/10.1016/j.jlumin.2016.04.016

    CAS  Article  Google Scholar 

  18. 18.

    Hisaindee S, Zahid O, Meetani MA, Graham J (2012) Fluorescent studies of salicylaldehyde and other related carbonyl compounds for the selective and sensitive detection of Zinc(II) ions in aqueous solution. J Fluoresc 22:677–683. https://doi.org/10.1007/s10895-011-1003-3

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Zheng ZP, Wei Q, Yin WX, Wan LT, Huang X, Yu Y, Cai YP (2015) Two Schiff base ligands for distinguishing ZnII/CdII sensing—effect of substituent on fluorescent sensing. RSC Adv 5:27682–27689. https://doi.org/10.1039/C5RA00987A

    CAS  Article  Google Scholar 

  20. 20.

    Wang W, Li R, Song T, Zhang C, Zhao Y (2016) Study on the fluorescent chemosensors based on a series of bis-Schiff bases for the detection of zinc(II). Spectrochim Acta A Mol Biomol Spectrosc 164:133–138. https://doi.org/10.1016/j.saa.2016.04.016

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Horak E, Kassal P, Steinberg IM (2018) Benzimidazole as a structural unit in fluorescent chemical sensors: the hidden properties of a multifunctional heterocyclic scaffold. Supramol Chem 30:838–857. https://doi.org/10.1080/10610278.2017.1403607

    CAS  Article  Google Scholar 

  22. 22.

    Wei Y, Xu L, He S, Li C, Wu Q, Zeng X, Wang H, Liu K (2020) Novel benzimidazole-based conjugated polyelectrolytes: synthesis, solution photophysics and fluorescent sensing of metal ions. e-Polymers 20:16–31. https://doi.org/10.1515/epoly-2020-0003

  23. 23.

    Anbu S, Paul A, Surendranath K, Solaiman NS, Pombeiro AJL (2021) A benzimidazole-based new fluorogenic differential/sequential chemosensor for Cu2+, Zn2+, CN-, P2O74-, DNA, its live-cell imaging and pyrosequencing applications. Sens Actuators B Chem 337:129785. https://doi.org/10.1016/j.snb.2021.129785

    CAS  Article  Google Scholar 

  24. 24.

    Sumana GR, Bubblya SG, Gudennavara SB, Gayathrib V (2019) Benzimidazole and benzothiazole conjugated Schiff base as fluorescent sensors for Al3+ and Zn2+. J Photochem Photobiol A Chem 382:111947. https://doi.org/10.1016/j.jphotochem.2019.111947

    CAS  Article  Google Scholar 

  25. 25.

    Yun JY, Kim A, Hwang SM, Yun D, Lee H, Kim KT, Kim C (2019) A novel benzimidazole-based fluorescence probe for detecting zinc ion in aqueous solution and zebrafish. Bull Chem Soc Jpn 92:961–966. https://doi.org/10.1246/bcsj.20180390

    CAS  Article  Google Scholar 

  26. 26.

    Roy SB, Prodhan C, Chaudhuri K, Rajak KK (2017) A benzimidazole-based chemodosimeter for the fluorometric detection of Zn and Cu via 1,5 proton shifts and C-N bond cleavage. Photochem Photobiol Sci 16:1103–1116. https://doi.org/10.1039/c7pp00059f

    CAS  Article  Google Scholar 

  27. 27.

    Maji A, Pal S, Lohar S, Mukhopadhyay SK, Chattopadhyay P (2017) A new turn-on benzimidazole based greenish-yellow fluorescent sensor for Zn2+ ion at biological pH applicable in cell imaging. New J Chem 41:7583–7590. https://doi.org/10.1039/C7NJ01821E

    CAS  Article  Google Scholar 

  28. 28.

    Kim YS, Lee JJ, Lee SY, Jo TG, Kim C (2016) A highly sensitive benzimidazole-based chemosensor for the colorimetric detection of Fe(II) and Fe(III) and the fluorometric detection of Zn(II) in aqueous media. RSC Adv 6:61505. https://doi.org/10.1039/c6ra10086d

    CAS  Article  Google Scholar 

  29. 29.

    Velmurugan K, Raman A, Don D, Tang L, Easwaramoorthi S, Nandhakumar R (2015) Quinoline benzimidazole-conjugate for the highly selective detection of Zn(II) by dual colorimetric and fluorescent turn-on responses. RSC Adv 5:44463–44469. https://doi.org/10.1039/C5RA04523A

    CAS  Article  Google Scholar 

  30. 30.

    Kima MJ, Sharma H, Singh N, Jang DO (2013) L-cysteine recognition triggered by Zn2+ complexation with ligand. Inorg Chem Commun 36:96–99. https://doi.org/10.1016/j.inoche.2013.08.006

    CAS  Article  Google Scholar 

  31. 31.

    Galić N, Cimerman Z, Tomišić V (1997) Tautomeric and protonation equilibria of Schiff bases of salicylaldehyde with aminopyridines. Anal Chim Acta 343:135–143. https://doi.org/10.1016/S0003-2670(96)00586-7

    Article  Google Scholar 

  32. 32.

    Horaka E, Kassala P, Hranjecb M, Steinberg IM (2018) Benzimidazole functionalised Schiff bases: novel pH sensitive fluorescence turn-on chromoionophores for ion-selective optodes. Sens Actuators B-Chem 258:415–423. https://doi.org/10.1016/j.snb.2017.11.121

    CAS  Article  Google Scholar 

  33. 33.

    Skoog DA, Holler FJ, Crouch SR (2018) Principles of Instrumental Analysis. Molecular Spectroscopy, 7th edn. Cengage Learning, Boston, pp. 333

  34. 34.

    Formica M, Ambrosi G, Fusi V, Giorgi L, Arca M, Garau A, Pintus A, Lippolis V (2018) CdII/ZnII discrimination using 2,5-diphenyl[1,3,4]oxadiazole based fluorescent chemosensors. New J Chem 42:7869–7883. https://doi.org/10.1039/C8NJ00113H

    CAS  Article  Google Scholar 

  35. 35.

    Sil A, Maity A, Giri D, Patra SK (2016) A phenylene–vinylene terpyridine conjugate fluorescent probe for distinguishing Cd2+ from Zn2+ with high sensitivity and selectivity. Sens Actuators B-Chem 226:403–411. https://doi.org/10.1016/j.snb.2015.11.106

    CAS  Article  Google Scholar 

  36. 36.

    Singh H, Rajeshwari M, Khurana JM (2018) Synthesis, photophysical studies, and application of novel 2,7-bis((1-butyl-1H-1,2,3-triazol-4-yl)methoxy)naphthalene as a highly selective, reversible fluorescence chemosensor for detection Fe3+ ions. J Photochem Photobiol A 353:424–432. https://doi.org/10.1016/j.jphotochem.2017.12.003

    CAS  Article  Google Scholar 

  37. 37.

    Pandey R, Kumar A, Xu Q, Pandey DS (2020) Zinc(II), copper(II) and cadmium(II) complexes as fluorescent chemosensors for cations. Dalton Trans 49:542–568. https://doi.org/10.1039/C9DT03017D

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Düzce University.

Funding

This study was supported by Düzce University Scientific Research Projects Unit (Project numbers: 2017.05.03.620 and 2019.05.03.947).

Author information

Affiliations

Authors

Contributions

EO: Conceptualization, Investigation, Formal analysis, Resources, Writing—Review and Editing. EE: Conceptualization, Methodology, Validation, Investigation, Writing—Original Draft, Writing—Review and Editing. KŞ: Conceptualization, Investigation, Formal analysis, Resources, Writing—Review and Editing. ÜE: Conceptualization, Methodology, Investigation, Resources, Writing—Review and Editing.

Corresponding author

Correspondence to Ece Ergun.

Ethics declarations

Ethics Approval

This article does not contain any studies with human or animal subjects.

Informed Consent

A statement regarding informed consent is not applicable.

Conflict of Interest

All authors declare no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 391 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Orhan, E., Ergun, E., Şarkaya, K. et al. A Novel Benzimidazole-Based Chemosensor for Fluorometric Determination of Zinc Ions. J Fluoresc (2021). https://doi.org/10.1007/s10895-021-02818-w

Download citation

Keywords

  • Chemosensor
  • Schiff base
  • Zinc ion
  • Benzimidazole