Skip to main content
Log in

Surface-Modified Colloid CdTe/CdS Quantum Dots by a Biocompatible Thiazolidine Derivative as Promising Platform for Immobilization of Glucose Oxidase: Application to Fluorescence Sensing of Glucose

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This work focuses on the synthesis of novel modified core–shell CdTe/CdS quantum dots (QDs) and develops as a fluorescence sensor for glucose determination. The (E)-2,2'-(4,4'-dioxo-2,2'-dithioxo-2H,2'H-[5,5'-bithiazolylidene]-3,3'(4H,4'H)-diyl)bis(3- mercaptopropanoic acid) (DTM) as a new derivative of thiazolidine was synthesized and characterized and used to surface-modification of CdTe/CdS QDs. DTM-capped CdTe/CdS QDs used to immobilization of glucose oxidase (GOD). The intensity fluorescence emission of the CdSe/CdS-DTM/GOD is highly sensitive to the concentration of H2O2 as a byproduct of the catalytic oxidation of glucose. The experimental results showed that the quenched fluorescence was proportional to the glucose concentration within the range of 10 nM—0.32 μM under optimized experimental conditions. The limit of detection of this system was found to be 4.3 nM. Compared with most of the existing methods, this newly developed system possesses many advantages, including simplicity, low cost, and good sensitivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material (Data Transparency)

The data that support the findings of this study are openly available in the public domain.

References

  1. Ye N, Kou X, Shen J, Huang S, Chen G, Ouyang G (2020) Chem BioChem 18(2585):2590

    Google Scholar 

  2. Wu XL, Hou M, Ge J (2015) Catal Sci Technol 5:5077–5085

    CAS  Google Scholar 

  3. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Enzym Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  4. Rodrigues RC, Ortiz C, Berenguer-Murcia A, Torres R, Fernández-Lafuente R (2013) Chem Soc Rev 42:6290–6307

    Article  CAS  Google Scholar 

  5. Salimi A, Compton RG, Hallaj R (2004) Anal Biochem 333:49–56. ht

  6. Miao F, Lu X, Tao B, Li R, Chu PK (2016) Microelectron Eng 159:153–158

    Article  CAS  Google Scholar 

  7. Salimi A, Sharifi E, Noorbakhsh A, Soltanian S (2007) Biosens Bioelectron 22:3146–3153

    Article  CAS  Google Scholar 

  8. Salimi A, Hallaj R, Soltanian S (2009) Electroanalysis 21:2693–2700

    Article  CAS  Google Scholar 

  9. Aldea A, Jose R, Leote B, Matei E, Evanghelidis A, Enculescu I, Diculescu VC (2021) Microchem J 165101068

  10. Xia H, Li N, Zhong X, Jiang Y (2020) Metal-organic frameworks. Front Bioeng Biotechnol 8:695

  11. Gan JS, Bagheri AR, Aramesh N, Gul I, Franco M, Almulaiky YQ, Bila M (2021) Int J Biol Macromol 167:502–515

    Article  CAS  Google Scholar 

  12. Zucca P, Sanjust E (2014) Molecules 19:14139–14194

    Article  CAS  Google Scholar 

  13. Smith AM, Nie S (2010) Acc Chem Res 43:190–200

    Article  CAS  Google Scholar 

  14. Wang X, Ruedas-Rama MJ, Hall EAH (2007) Anal Lett 40:1497–1520

    Article  CAS  Google Scholar 

  15. Cui L, He XP, Chen GR (2015) RSC Adv 5:26644–26653

    Article  CAS  Google Scholar 

  16. Wu W, Zhou T, Berliner A, Banerjee P, Zhou S (2010) Angew Chemie Int Ed 49:6554–6558

    Article  CAS  Google Scholar 

  17. Singh P, Prabhune AA, Ogale SB, Guin D (2013) J Mater Chem B 47:6538–6543

  18. Wu P, He Y, Wang H-F, Yan X-P (2010) Anal Chem 82:1427–1433

    Article  CAS  Google Scholar 

  19. Jung EY, Ye JH, Jung SH, Choi SH (2016) J Nanomater 2016:1–9

    Google Scholar 

  20. Shiang YC, Huang CC, Chang HT (2009) Chem Commun 23:3437–3439

    Article  CAS  Google Scholar 

  21. Qadri H, Qureshi MF, Mir MA, Shah AH (2021) Microbiol Res 247:126725

  22. Crane PK, Walker R, Hubbard RA, Li G, Nathan DM, Zheng H, Haneuse S, Craft S, Montine TJ, Kahn SE, McCormick W, McCurry SM, Bowen JD, Larson EB (2013) N Engl J Med 369:540–548

    Article  CAS  Google Scholar 

  23. Chen L, Hwang E, Zhang  J (2018) Sensors (Switzerland) 18:1–21

  24. Batool R, Rhouati A, Nawaz MH, Hayat A, Marty JL (2019) Biosensors 9:1–19

    Article  CAS  Google Scholar 

  25. Farough Nasiri SA, Zolali A (2012) J Heterocycl Chem 49:1458–1461

    Article  CAS  Google Scholar 

  26. Peng H, Zhang L, Soeller C, Travas-Sejdic J (2007) J Lumin 127:721–726

    Article  CAS  Google Scholar 

  27. Rahman Hallaj SZ, Hosseinchi Z, Babamiri B (2019) Spectrochim. Acta Part A Mol Biomol Spectrosc 216:418–423

    Article  CAS  Google Scholar 

  28. Hu M, Tian J, Lu H-T, Weng L-X, Wang L-H (2010) Talanta 82:997–1002

    Article  CAS  Google Scholar 

  29. Cao L, Ye J, Tong L, Tang B (2008) Chem -A Eur J 14:9633–9640

    Article  CAS  Google Scholar 

  30. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JMS (2003) Nat Mater 2:630–638

  31. Peng H, Zhang L, Kjällman THM, Soeller C (2007) J Am Chem Soc 129:3048–3049

    Article  CAS  Google Scholar 

  32. Wu L, Zhong Lin Z, Ping Zhong H, Mei Chen X, Yong Huang Z (2017) Sens Actuat B Chem 239:69–75

    Article  CAS  Google Scholar 

  33. Tang Y, Yang Q, Wu T, Liu L, Ding Y, Yu B (2014) Langmuir 30:6324–6330

    Article  CAS  Google Scholar 

  34. Ding L, Zhang B, Xu C, Huang J, Xia Z (2016) Anal Methods 8:2967–2970

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Iranian Nanotechnology Initiative and Research Office of the University of Kurdistan are gratefully acknowledged.

Funding

The authors declare that, this research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception design and data acquisition.

Corresponding author

Correspondence to Rahman Hallaj.

Ethics declarations

Ethics Approval (Include Appropriate Approvals or Waivers)

All studies were conducted in accordance with principles for human experimentation.

Code Availability (Software Application or Custom Code)

There was not use any new software application or custom code in our report.

Additional Declarations for Articles in Life Science Journals that Report the Results of Studies Involving Humans and/or Animals

This article does not contain any studies involving human participants.

Conflicts of Interest/Competing Interests (Include Appropriate Disclosures)

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallaj, R., Hosseinchi, Z. Surface-Modified Colloid CdTe/CdS Quantum Dots by a Biocompatible Thiazolidine Derivative as Promising Platform for Immobilization of Glucose Oxidase: Application to Fluorescence Sensing of Glucose. J Fluoresc 31, 1805–1813 (2021). https://doi.org/10.1007/s10895-021-02805-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02805-1

Keywords

Navigation