Skip to main content
Log in

One Spot Microwave Synthesis and Characterization of Nitrogen-Doped Carbon Dots with High Oxygen Content for Fluorometric Determination of Banned Sudan II Dye in Spice Samples

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A simple microwave-assisted synthesis of nitrogen-doped carbon dots with high oxygen content (O-N-CDs) was carried out with citric acid as a carbon source and 2,4-diamino-6-methyl-1,3,5-triazine as a nitrogen source in triethylene glycol (TEG) media. It was determined by SEM analysis that O-N-CDs consisted of particles of different sizes and shapes. Transmission electron microscopy (TEM), Raman spectroscopy, and X-ray diffraction (XRD) analysis confirmed that O-N-CDs have a graphitic structure. Moreover, they showed a high fluorescence property based on the excitation wavelength. Therefore, a new fluorometric method was developed for the determination of banned food dye Sudan II by using the O-N-CDs. The proposed method was used in the determination of Sudan II in spiked spice samples. The detection limit was 0.6 mg L−1 and the linear range was 0–8 mg L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhang J, Yu SH (2016) Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today 19:382–393

    Article  CAS  Google Scholar 

  2. Das R, Bandyopadhyay R, Pramanik P (2018) Carbon quantum dots from natural resource: a review. Mater Today Chem 8:96–109

    Article  CAS  Google Scholar 

  3. Dinç S, Günhan RS (2020) Carbon dots applications in electrochemical and electrochemiluminescence sensors: Some examples of pathogen sensors. Turk J Anal Chem 2:47–54

    Google Scholar 

  4. Dinç S, Kara M (2018) Synthesis and applications of carbon dots from food and natural products: Review. J Apither Nature 1:33–37

    Google Scholar 

  5. Li L, Dong T (2018) Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping. J Mater Chem C 6:7944–7970

    Article  CAS  Google Scholar 

  6. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon dots, and polymer dots): current state and future perspective. Nano Res 8:355–381

    Article  CAS  Google Scholar 

  7. Yan F, Jiang Y, Sun X, Wei J, Chen L, Zhang Y (2020) Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Res 13:52–60

    Article  CAS  Google Scholar 

  8. Guo L, Ge J, Liu W, Niu G, Jia O, Wang H, Wang P (2016) Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism. Nanoscale 8:729–734

    Article  PubMed  CAS  Google Scholar 

  9. Wang H, Sun C, Chen X, Zhang Y, Colvin VL, Rice Q, Seo J, Feng S, Wang S, Yu WW (2017) Excitation wavelength independent visible color emission of carbon dots. Nanoscale 9:1909–1915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wen ZH, Yin XB (2016) Excitation-independent carbon dots, from photoluminescence mechanism to single-color application. RSC Adv 6:27829–27835

    Article  CAS  Google Scholar 

  11. Zhi B, Yao X, Cui Y, Orr G, Haynes CL (2019) Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots. Nanoscale 11:20411–20428

    Article  PubMed  CAS  Google Scholar 

  12. Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  PubMed  CAS  Google Scholar 

  14. Zuo P, Lu X, Sun Z, Guo Y, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183:519–542

    Article  CAS  Google Scholar 

  15. Tuerhong M, Xu Y, Yin XB (2017) Review on carbon dots and their applications. Chinese J Anal Chem 45:139–150

    Article  Google Scholar 

  16. Choi Y, Choi Y, Kwon OH, Kim BS (2018) Carbon dots: bottom-up syntheses, properties, and light-harvesting applications. Chem Asian J 13:586–598

    Article  PubMed  CAS  Google Scholar 

  17. Miao S, Liang K, Zhu J, Yang B, Zhao D, Kong B (2020) Hetero-atom-doped carbon dots: Doping strategies, properties and applications. Nano Today 33:100879

  18. Zhang Q, Xie S, Yang Y, Wu Y, Wang X, Wu J, Zhang L, Chen J, Wang Y (2018) A facile synthesis of highly nitrogen-doped carbon dots for imaging and detection in biological samples. J Anal Methods Chem 7890937

  19. Liu Y, Jiang L, Li B, Fan X, Wang W, Liu P, Xu S, Luo X (2019) Nitrogen doped carbon dots: mechanism investigation and their application for label free CA125 analysis. J Mater Chem B 7:3053–3058

    Article  CAS  Google Scholar 

  20. Li R, Cao A, Zhang Y, Li G, Jiang F, Li S, Chen D, Wang C, Ge J, Shu C (2014) Formation of nitrogen-doped mesoporous graphitic carbon with the help of melamine. ACS Appl Mater Interfaces 6:20574–20578

    Article  PubMed  CAS  Google Scholar 

  21. Liu S, Liu R, Xing X, Yang C, Xu Y, Wu D (2016) Highly photoluminescent nitrogen-rich carbon dots from melamine and citric acid for selective detection of iron(III) ion. RSC Adv 6:31884–31888

    Article  CAS  Google Scholar 

  22. Zhuang Q, Sun L, Ni Y (2017) One-step synthesis of graphitic carbon nitride nanosheets with the help of melamine and its application for fluorescence detection of mercuric ions. Talanta 164:458–462

    Article  PubMed  CAS  Google Scholar 

  23. Iqbal A, Iqbal K, Xu L, Li B, Gong D, Liu X, Guo Y, Liu W, Qin W, Guo H (2018) Heterogeneous synthesis of nitrogen-doped carbon dots prepared via anhydrous citric acid and melamine for selective and sensitive turn on-off-on detection of Hg (II), glutathione and its cellular imaging. Sensor Actuat B-Chem 255:1130–1138

    Article  CAS  Google Scholar 

  24. Jiang X, Li J, Fang J, Gao L, Cai W, Li X, Xu A, Ruan X (2017) The photocatalytic performance of g-C3N4 from melamine hydrochloride for dyes degradation with peroxymonosulfate. J Photochem Photobiol A Chem 336:54–62

    Article  CAS  Google Scholar 

  25. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25:10397–10401

    Article  PubMed  CAS  Google Scholar 

  26. Yang H, Li F, Zou C, Huang Q, Chen D (2017) Sulfur-doped carbon quantum dots and derived 3D carbon nanoflowers are effective visible to near infrared fluorescent probes for hydrogen peroxide. Microchim Acta 184:2055–2062

    Article  CAS  Google Scholar 

  27. Molkenova A, Sh. Atabaev T, (2019) Phosphorus-doped carbon dots (P-CDs) from dextrose for low-concentration ferric ions sensing in water Optik 187 70 73

  28. Wang W, Peng J, Li F, Su B, Chen X, Chen X (2019) Phosphorus and chlorine co-doped carbon dots with strong photoluminescence as a fluorescent probe for ferric ions. Microchim Acta 186:32

    Article  CAS  Google Scholar 

  29. Chen Z, Wu Y, Wang Q, Wang Z, He L, Lei Y, Wang Z (2017) Oxygen-rich carbon-nitrogen quantum dots as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanofibers. Prog Nat Sci 27:333–337

    Article  CAS  Google Scholar 

  30. Li Q, Wang S, Sun Z, Tang Q, Liu Y, Wang L, Wang H, Wu Z (2019) Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res 12:2749–2759

    Article  CAS  Google Scholar 

  31. Liu B, Liu Y, Chen H, Yang M, Li H (2017) Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J Power Sources 341:309–317

    Article  CAS  Google Scholar 

  32. Lizumi Y, Yudasaka M, Kim J, Sakakita H, Takeuchi T, Okazaki T (2018) Oxygen-doped carbon nanotubes for near-infrared fluorescent labels and imaging probes. Sci Rep 8:6272

    Article  CAS  Google Scholar 

  33. Khazaee M, Xia W, Lackner G, Mendes RG, Rümmeli M, Muhler M, Lupascu DC (2016) Dispersibility of vapor phase oxygen and nitrogen functionalized multi-walled carbon nanotubes in various organic solvent. Sci Rep 6:26208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Angamuthu R, Rajendran R, Vairamuthu R (2018) Quick microwave assisted synthesis and in vitro imaging application of oxygen doped fluorescent carbon dots. J Fluoresc 28:959–966

    Article  PubMed  CAS  Google Scholar 

  35. Wang L, Hou J, Li H, Zhao Q, Zhang F, Zhao J, Ding H, Ding L (2015) Facile synthesis of nitrogen-doped carbon dots and its application as sensing probes for serum iron. J Nanopart Res 17:457

    Article  CAS  Google Scholar 

  36. Gümrükçüoğlu A, Başoğlu A, Kolaylı S, Dinç S, Kara M, Ocak M, Ocak Ü (2020) Highly sensitive fluorometric method based on nitrogen-doped carbon dot clusters for tartrazine determination in cookies samples. Turk J Chem 44:9–111

    Article  CAS  Google Scholar 

  37. Taniguchi M, Lindsey JS (2018) Database of absorption and fluorescence spectra of >300 common compounds for use in photochem CAD. Photochem Photobiol 94:290–327

    Article  PubMed  CAS  Google Scholar 

  38. Gong J, An X, Yan X (2014) A novel rapid and green synthesis of highly luminescence carbon dots with good biocompatibility for cell imaging. New J Chem 38:1376–1379

    Article  CAS  Google Scholar 

  39. Çağılcı OC, Gümrükçüoğlu A, Alp H, Vanlı E, Ocak Ü, Ocak M, (2017) A simple fluorometric method to determine Sudan I dye in spices. Karadeniz Chem Sci Technol 01:EA.1-EA.4

  40. Thomas A, Fischer A, Goettmann F, Antonietti M, Müller JO, Schlögl R, Carlsson JM (2018) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18:4893–4908

    Article  CAS  Google Scholar 

  41. Kelarakis A (2014) From highly graphitic to amorphous carbon dots: A critical review. MRS Energy Sustain 1:E2

    Article  Google Scholar 

  42. Siddique AB, Pramanick AK, Chatterjee S, Ray M (2018) Amorphous carbon dots and their remarkable ability to detect 2,4,6-trinitrophenol. Sci Rep 8:9770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bhaisare ML, Talib A, Khan MS, Pandey S, Wu HF (2015) Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging. Microchim Acta 182:2173–2181

    Article  CAS  Google Scholar 

  44. Arul V, Sethuraman MG (2019) Hydrothermally green synthesized nitrogen-doped carbon dots from phyllanthus emblica and their catalytic ability in the detoxification of textile effluents. ACS Omega 4:3449–3457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Dong Q, Latiff NM, Mazánek V, Rosli NF, Chia HL, Zdenek S, Pumera M (2018) Triazine- and heptazine-based carbon nitrides: Toxicity. ACS Appl Nano Mater 1:4442–4449

    Article  CAS  Google Scholar 

  46. Zhou Y, Zhang L, Huang W, Kong Q, Fan X, Wang M, Shi J (2016) N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light. Carbon 99:111–117

    Article  CAS  Google Scholar 

  47. Esmeryan KD, Castano CE, Bressler AH, Abolghasemibizaki M, Fergusson CP, Roberts A, Mohammadi R (2017) Kinetically driven graphite-like to diamond-like carbon transformation in low temperature laminar diffusion flames. Diam Relat Mater 75:58–68

    Article  CAS  Google Scholar 

  48. Calderon HA, Okonkwo A, Estrada-Guel I, Hadjiev VG, Alvarez-Ramírez F, Robles Hernández FC (2016) HRTEM low dose: the unfold of the morphed graphene, from amorphous carbon to morphed graphenes. Adv Struct Chem Imag 2:10

    Article  CAS  Google Scholar 

  49. Shen J, Li Y, Su Y, Zhu Y, Jiang H, Yang X, Li C (2015) Photoluminescent carbon-nitrogen quantum dots as efficient electrocatalyst for oxygen reduction. Nanoscale 7:2003–2008

    Article  PubMed  CAS  Google Scholar 

  50. Ocak M, Ak T, Aktaş A, Özbek N, Çağılcı OC, Gümrükçüoğlu A, Kantekin H, Ocak Ü, Alp H (2017) Metal complexation properties of Schiff bases containing 1,3,5-triazine derived from 2-hydroxy-1-naphthaldehyde in solution. A simple spectrofluorimetric method to determine mercury (II). J Fluoresc 27:59–68

    Article  PubMed  CAS  Google Scholar 

  51. Wang Y, Wang C, Guo H, Wang Y, Huang Z (2017) A nitrogen-doped three-dimensional carbon framework for high performance sodium ion batteries. RSC Adv 7:1588–1592

    Article  CAS  Google Scholar 

  52. Samikannua A, Konwara LJ, Mäki-Arvelab P, Mikkola JP (2019) Renewable N-doped active carbons as efficient catalysts for direct synthesis of cyclic carbonates from epoxides and CO2. Appl Catal B-Environ 241:41–51

    Article  CAS  Google Scholar 

  53. Sun Y, Li S, Jovanov ZP, Bernsmeier D, Wang H, Paul B, Wang X, Kehl S, Strasser P (2018) Structure, activity, and faradaic efficiency of nitrogen-doped porous carbon catalysts for direct electrochemical hydrogen peroxide production R. Chemsuschem 11:3388–3395

    Article  PubMed  CAS  Google Scholar 

  54. Scardamaglia M, Susi T, Struzzi C, Snyders, Di Santo G, Petaccia L, Bittencourt C (2017) Spectroscopic observation of oxygen dissociation on nitrogen doped graphene Sci Rep 7 7960

  55. Lisi N, Dikonimos T, Buonocore F, Pittori M, Mazzaro R, Rizzoli R, Marras S, Capasso A (2017) Contamination-free graphene by chemical vapor deposition in quartz furnaces. Sci Rep 7:9927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Sun C, Zhang Y, Wang P, Yang Y, Wang Y, Xu J, Wang Y, Yu WW (2016) Synthesis of nitrogen and sulfur co-doped carbon dots from garlic for selective detection of Fe3+. Nanoscale Res Lett 11:1–9

    Article  CAS  Google Scholar 

  57. Şatana Kara HE (2019) Novel “turn off-on” sensors for detection of DNA-acrylamide interaction using ZnS quantum dots as a phosphorescent prob. Turk J Chem 43:125–136

    Article  CAS  Google Scholar 

  58. Başoğlu A, Tosun G, Ocak M, Alp H, Yaylı N, Ocak Ü (2015) Simple time-saving method for iron determination based on fluorescence quenching of an azaflavanon-3-ol compound. J Agric Food Chem 63:2654–2659

    Article  PubMed  CAS  Google Scholar 

  59. Ertaş E, Özer H, Alasalvar C (2017) A rapid HPLC method for determination of Sudan dyes and Para Red in red chilli pepper. Food Chem 105:756–760

    Article  CAS  Google Scholar 

  60. Yiğit H, İnanç AL (2017) Açıkta ve ambalajlı olarak satışa sunulan kırmızıbiberlerde sentetik boya varlığı. Akademik Gıda 15:261–268

    Article  Google Scholar 

  61. Schummer C, Sassel J, Bonenberger P, Moris G (2013) Low-level detections of Sudan I, II, III and IV in spices and Chilli-containing foodstuffs using UPLC-ESI-MS/MS. J Agric Food Chem 61:2284–2289

    Article  PubMed  CAS  Google Scholar 

  62. Cornet V, Govaert Y, Moens G, Van Loco J, Degroodt JM (2006) Development of a fast analytical method for the determination of sudan dyes in chilli-and curry-containing foodstuffs by high-performance liquid chromatography− photodiode array detection. J Agric Food Chem 54:639–644

    Article  PubMed  CAS  Google Scholar 

  63. Liu S, Zhang X, Lin X, Wu X, Fu F, Xie Z (2007) Development of a new method for analysis of Sudan dyes by pressurized CEC with amperometric detection. Electrophoresis 28:1696–1703

    Article  PubMed  CAS  Google Scholar 

  64. Ling Y, Li JX, Qu F, Li NB, Luo HQ (2014) Rapid fluorescence assay for Sudan dyes using polyethyleneimine-coated copper nanoclusters. Microchim Acta 181:1069–1075

    Article  CAS  Google Scholar 

  65. Li Y, Wang A, Bai Y, Wang S (2017) Acriflavine-immobilized eggshell membrane as a new solid-state biosensor for Sudan I-IV detection based on fluorescence resonance energy transfer. Food Chem 237:966–973

    Article  PubMed  CAS  Google Scholar 

  66. Hu Y, Gao Z (2020) Sensitive detection of Sudan dyes using tire-derived carbon dots as a fluorescent sensor. Spectrochim Acta A, Mol Biomol Spectrosc 239:118514.

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in the writing of the manuscript.

Corresponding author

Correspondence to Ümmühan Ocak.

Ethics declarations

Conflicts of Interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 840 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramoğlu, B., Gümrükçüoğlu, A., Çekirge, E. et al. One Spot Microwave Synthesis and Characterization of Nitrogen-Doped Carbon Dots with High Oxygen Content for Fluorometric Determination of Banned Sudan II Dye in Spice Samples. J Fluoresc 31, 1587–1598 (2021). https://doi.org/10.1007/s10895-021-02795-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02795-0

Keywords

Navigation