Skip to main content
Log in

Fluorescent Sensors for Hg2+ and Cu2+ Based on Condensation Products of 4H-1,2,4 Triazole-4-Amine and Carboxylated Benzoic Acids

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Mercury (Hg) causes serious health issues in its all forms. Deficiency as well as excess of copper ion (Cu2+) in human body is hazardous. A series of four compounds have been derived from carboxylated benzoic acids (benzoic acid, isophthalic acid, terephthalic acid and phthalic acid) and 4H-1,2,4 triazole-4-amine and characterized. Fluorescence detection of Hg2+ was recorded by the derivates with benzoic acid and isophthalic acid while the derivatives of terephthalic acid and phthalic acid detect Cu2+ by fluorescence “off” mode. Metal ions like Li+, Na+, K+, Zn2+, Al3+, Mg2+, Mn2+, Co2+, Ni2+, Cu2+, Cd2+, Pb2+ and Hg2+ found not to interfere. The stoichiometry of binding is 1:1 for the benzoic acid derivative with Hg2+ while it is 1:2 for the other three derivatives. The binding constants are ca. 10–4.5 between the sensors and Hg2+ or Cu2+ and detection limits are around 10–5.5 M. DFT calculation provided optimized geometries of the sensors and confirmed the stoichiometry of binding with Hg2+/Cu2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Zhong Z, Zhang D, Li D, Zheng G, Tian Z (2016) Turn-on fluorescence sensor based on naphthalene anhydride for Hg2+. Tetrahedron 72:8050–8054

    Article  CAS  Google Scholar 

  2. Zhu Z, Su Y, Li J, Di Li J, Zhang SS, Zhao Y, Li G, Fan C (2009) Highly Sensitive Electrochemical Sensor for Mercury(II) Ions by Using a Mercury-Specific Oligonucleotide Probe and Gold Nanoparticle-Based Amplification. Anal Chem 81:7660–7666

    Article  CAS  Google Scholar 

  3. Chen Z, Lou T, Wu Q, Li K, Tan L, Sun J (2015) A facile label-free colorimetric sensor for Hg2+ based on Hg-triangular silver nanoplates with amalgam-like structure. Sens Actuators B 221:365–369

    Article  CAS  Google Scholar 

  4. Sarajli M, Ðuri Z, Jovi V, Petrovi S, Dordevi D (2013) Detection limit for an adsorption-based mercury sensor. Microelectron Eng 103:118–122

    Article  CAS  Google Scholar 

  5. Patir K, Gogoi SK (2018) Facile Synthesis of Photoluminescent Graphitic Carbon Nitride Quantum Dots for Hg2+ Detection and Room Temperature Phosphorescence. Chem Eng 6:1732–1743

    CAS  Google Scholar 

  6. Wei T, Gao G, W-juan Qu, B-bing Shi Q, Li HY, Zhang Y (2014) Selective fluorescent sensor for mercury(II) ion based on an easy to prepare double naphthalene Schiff base. Sens Actuators B Chem 199:142–147

    Article  CAS  Google Scholar 

  7. Rex M, Hernandez FE, Campiglia AD (2006) Pushing the Limits of Mercury Sensors with Gold Nanorods. Anal Chem 78:445–451

    Article  CAS  Google Scholar 

  8. Shi W, Ma H (2008) Rhodamine B thiolactone: a simple chemosensor for Hg2+ in aqueous media. Chem Commun 16:1856–1858

    Article  CAS  Google Scholar 

  9. Lin W, Cao X, Ding Y, Yuan L, Long L (2010) A highly selective and sensitive fluorescent probe for Hg2+ imaging in live cells based on a rhodamine–thioamide– alkyne scaffold. Chem Commun 46:3529–3531

    Article  CAS  Google Scholar 

  10. Chen XQ, Pradhan T, Wang F, Kim JS, Yoon J (2012) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112:1910–1916

    Article  CAS  Google Scholar 

  11. Choi MG, Kim YH, Namgoong JE, Chang SK (2009) Hg2+ -selective chromogenic and fluorogenic chemodosimeter based on thiocoumarins. Chem Commun 24:3560–3562

    Article  CAS  Google Scholar 

  12. Namgoong JE, Jeon HL, Kim YH, Choi MG, Chang SK (2010) Hg2+ -selective fluorogenic chemodosimeter based on naphthoflavone. Tetrahedron Lett 51:167–169

    Article  CAS  Google Scholar 

  13. Jiang W, Wang W (2009) A selective and sensitive “turn-on” fluorescent chemodosimeter for Hg2+ in aqueous media via Hg2+ promoted facile desulfurization–lactonization reaction. Chem Commun 29:3913–3915

    Article  CAS  Google Scholar 

  14. Winch S, Praharaj T, Fortin D, Lean DR (2008) Factors affecting methylmercury distribution in surficial, acidic, base-metal mine tailings. Sci Total Environ 392(2008):242–251

    Article  CAS  Google Scholar 

  15. Shigemoto AK, Virca CN, Underwood SJ, Shetterly LR, Mccormick TM (2016) J Coord Chem 69:2081–2089

    Article  CAS  Google Scholar 

  16. Bera K, Das AK, Nag M, Basak S (2014) Thiophene-based fluorescent mercury-sensors. Anal Chem 86:2740–2746

    Article  CAS  Google Scholar 

  17. Ju H, Chang DJ, Kim S, Ryu H, Lee E, In-Hyeok Park JH, Jung M, Ikeda Y, Habata SS, Lee. (2016) Cation-Selective and Anion-Controlled Fluorogenic Behaviors of a Benzothiazole-Attached Macrocycle That Correlate with Structural Coordination Modes. Inorg Chem 55:7448–7456

    Article  CAS  Google Scholar 

  18. Wei TB, Gao GY, Wen-juan Q, Shi BB, Lin Q, Yao H, Chang YM (2014) Selective fluorescent sensor for mercury(II) ion based on an easy to prepare double naphthalene Schiff base. Sensors and Actuators B 199:142–147

    Article  CAS  Google Scholar 

  19. Udhayakumari D, Velmathi S (2015) Naphthalene thiourea derivative based colorimetric and fluorescent dual chemosensor for F− and Cu2+/Hg2+ ions. Supramolecular Chem 27:539–544

    Article  CAS  Google Scholar 

  20. Chena Q-Y, Chen C-F (2005) A new Hg2+-selective fluorescent sensor based on a dansyl amide-armed calix[4]-aza-crown. Tetrahedron Lett 46:165–168

    Article  CAS  Google Scholar 

  21. Das S, Sarkar A, Rakshit A, Datta A (2018) A Sensitive Water-Soluble Reversible Optical Probe for Hg2+ Detection. Inorg Chem 57:5273–5281

    Article  CAS  Google Scholar 

  22. Que EL, Domaille DW, Chang CJ (2008) Chem Rev 108:1517–1549

    Article  CAS  Google Scholar 

  23. Sarkar B (1999) Chem Rev 99:2535–2544

    Article  CAS  Google Scholar 

  24. Jang YK, Nam UC, Kwon HL, Hwang IH, Kim C (2013) A selective colorimetric and fluorescent chemosensor based-on naphthol for detection of Al3+ and Cu2+. Dyes Pigm 99:6–13

    Article  CAS  Google Scholar 

  25. Zhang X, Kang M, Choi H, Jung JY, Swamy KMK, Kim S, Kim D, Kim J, Lee C, Yoon J (2014) Organic radical-induced Cu2+ selective sensing based on thiazolothiazole derivatives. Sens Actuators B 192:691–696

    Article  CAS  Google Scholar 

  26. Schleper B, Stuerenburg HJ (2001) Copper deficiency-associated myelopathy in a 46-year-old woman. J Neurol 248:705–706

    Article  CAS  Google Scholar 

  27. Yang X, Zhang W, Yi Z, Xu H, Wei J, Hao L (2017) Highly sensitive and selective fluorescent sensor for copper(II) based on salicylaldehyde Schiff-base derivatives with aggregation induced emission and mechanoluminescence. New J Chem 41:11079

    Article  CAS  Google Scholar 

  28. Kumar J, Bhattacharyya PK, Das DK (2015) New duel fluorescent “on–off” and colorimetric sensor for Copper(II): Copper(II) binds through N coordination and pi cation interaction to sensor. Spectrochim Acta A 138:99

    Article  CAS  Google Scholar 

  29. Zhao Y, Truhlar DG (2008) The M06 suite of density functional for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of fourM06-class functional and 12 other functionals. Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  30. Reed AE, Weinhold F (1983) Natural bond orbital analysis of near -Hartree-Fock water dimer. J Chem Phys 788:4066

  31. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735

  32. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor acceptor view point. Chem Rev 88:899

  33. Frisch MJ et al (2016) Gaussian 16 (Revision A.03), Gaussian, Inc., Wallingford CT

  34. Bharali B, Goyari S, Das DK (2018) Condensation Product of 4-Methoxybenzaldehyde and Ethylenediamine: “Off-On” Fluorescent Sensor for Cerium(III). J Fluorescence 28:1357–1361

    Article  CAS  Google Scholar 

  35. Das DK, Deka S, Guha AK (2019) Schiff Base Derived from 4,4′-methylenedianiline and p-anisaldehyde: Colorimetric Sensor for Cu2+, Paper Strip Sensor for Al3+ and Fluorescent Sensor for Pb2+. J Fluoresce 29:1467–1474

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank DST for financial grant vide MRP (EMR/2016/001745) and FIST to the department. IIT-Kanpur is thanked for HRMS spectra.

Funding

Funding received from DST, New Delhi (EMR/2016/001745).

Author information

Authors and Affiliations

Authors

Contributions

SD has done all the experiments works; AKG has done the computational works; DKD has done analysis of the results and written the paper.

Corresponding author

Correspondence to Diganta Kumar Das.

Ethics declarations

Conflict of Interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deka, S., Guha, A.K. & Das, D.K. Fluorescent Sensors for Hg2+ and Cu2+ Based on Condensation Products of 4H-1,2,4 Triazole-4-Amine and Carboxylated Benzoic Acids. J Fluoresc 31, 1937–1945 (2021). https://doi.org/10.1007/s10895-021-02777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02777-2

Keywords

Navigation